mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 17:00:15 +01:00
158 lines
5.5 KiB
Markdown
158 lines
5.5 KiB
Markdown
---
|
|
title: 🚅 LiteLLM and Ollama
|
|
description: Using LibreChat with LiteLLM Proxy
|
|
weight: -7
|
|
---
|
|
|
|
# Using LibreChat with LiteLLM Proxy
|
|
Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
|
|
* Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
|
|
* Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
|
|
* Authentication & Spend Tracking Virtual Keys
|
|
|
|
## Start LiteLLM Proxy Server
|
|
### Pip install litellm
|
|
```shell
|
|
pip install litellm
|
|
```
|
|
|
|
### Create a config.yaml for litellm proxy
|
|
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-eu
|
|
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-ca
|
|
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-large
|
|
api_base: https://openai-france-1234.openai.azure.com/
|
|
api_key:
|
|
rpm: 1440
|
|
```
|
|
|
|
### Start the proxy
|
|
```shell
|
|
litellm --config /path/to/config.yaml
|
|
|
|
#INFO: Proxy running on http://0.0.0.0:8000
|
|
```
|
|
|
|
## Use LiteLLM Proxy Server with LibreChat
|
|
|
|
|
|
#### 1. Clone the repo
|
|
```shell
|
|
git clone https://github.com/danny-avila/LibreChat.git
|
|
```
|
|
|
|
|
|
#### 2. Modify Librechat's `docker-compose.yml`
|
|
```yaml
|
|
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
|
|
```
|
|
|
|
**Important**: As of v0.6.6, it's recommend you use the `librechat.yaml` [Configuration file (guide here)](./custom_config.md) to add Reverse Proxies as separate endpoints.
|
|
|
|
#### 3. Save fake OpenAI key in Librechat's `.env`
|
|
|
|
Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
|
|
```env
|
|
OPENAI_API_KEY=sk-1234
|
|
```
|
|
|
|
#### 4. Run LibreChat:
|
|
```shell
|
|
docker compose up
|
|
```
|
|
|
|
---
|
|
|
|
### Why use LiteLLM?
|
|
|
|
1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.
|
|
|
|
2. **Load Balancing**: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments.
|
|
|
|
3. **Authentication & Spend Tracking**: The server supports virtual keys for authentication and tracks spending.
|
|
|
|
Key components and features include:
|
|
|
|
- **Installation**: Easy installation.
|
|
- **Testing**: Testing features to route requests to specific models.
|
|
- **Server Endpoints**: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation.
|
|
- **Supported LLMs**: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more.
|
|
- **Proxy Configurations**: Allows setting various parameters like model list, server settings, environment variables, and more.
|
|
- **Multiple Models Management**: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts.
|
|
- **Embedding Models Support**: Special configurations for embedding models.
|
|
- **Authentication Management**: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend.
|
|
- **Custom Configurations**: Supports setting model-specific parameters, caching responses, and custom prompt templates.
|
|
- **Debugging Tools**: Options for debugging and logging proxy input/output.
|
|
- **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics.
|
|
- **Proxy CLI Arguments**: A wide range of command-line arguments for customization.
|
|
|
|
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.
|
|
|
|
## Ollama
|
|
Use [Ollama](https://ollama.ai/) for
|
|
* Run large language models on local hardware
|
|
* Host multiple models
|
|
* Dynamically load the model upon request
|
|
|
|
### docker-compose.yaml with GPU
|
|
```yaml
|
|
version: "3.8"
|
|
services:
|
|
litellm:
|
|
image: ghcr.io/berriai/litellm:main-v1.18.8
|
|
volumes:
|
|
- ./litellm/litellm-config.yaml:/app/config.yaml
|
|
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
|
ollama:
|
|
image: ollama/ollama
|
|
deploy:
|
|
resources:
|
|
reservations:
|
|
devices:
|
|
- driver: nvidia
|
|
capabilities: [compute, utility]
|
|
ports:
|
|
- "11434:11434"
|
|
volumes:
|
|
- ./ollama:/root/.ollama
|
|
|
|
```
|
|
|
|
### Loading Models in Ollama
|
|
1. Browse the available models at [Ollama Library](https://ollama.ai/library)
|
|
2. Run ```docker exec -it ollama /bin/bash```
|
|
3. Copy the text from the Tags tab from the library website. It should begin with 'ollama run'
|
|
4. Check model size. Models that can run in GPU memory perform the best.
|
|
5. Use /bye to exit the terminal
|
|
|
|
### Litellm Ollama Configuration
|
|
Add the below lines to the config to access the Ollama models
|
|
```yaml
|
|
- model_name: mixtral
|
|
litellm_params:
|
|
model: ollama/mixtral:8x7b-instruct-v0.1-q5_K_M
|
|
api_base: http://ollama:11434
|
|
stream: True
|
|
- model_name: mistral
|
|
litellm_params:
|
|
model: ollama/mistral
|
|
api_base: http://ollama:11434
|
|
stream: True
|
|
```
|
|
|
|
|