mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 08:50:15 +01:00
* WIP(backend/api): custom endpoint * WIP(frontend/client): custom endpoint * chore: adjust typedefs for configs * refactor: use data-provider for cache keys and rename enums and custom endpoint for better clarity and compatibility * feat: loadYaml utility * refactor: rename back to from and proof-of-concept for creating schemas from user-defined defaults * refactor: remove custom endpoint from default endpointsConfig as it will be exclusively managed by yaml config * refactor(EndpointController): rename variables for clarity * feat: initial load custom config * feat(server/utils): add simple `isUserProvided` helper * chore(types): update TConfig type * refactor: remove custom endpoint handling from model services as will be handled by config, modularize fetching of models * feat: loadCustomConfig, loadConfigEndpoints, loadConfigModels * chore: reorganize server init imports, invoke loadCustomConfig * refactor(loadConfigEndpoints/Models): return each custom endpoint as standalone endpoint * refactor(Endpoint/ModelController): spread config values after default (temporary) * chore(client): fix type issues * WIP: first pass for multiple custom endpoints - add endpointType to Conversation schema - add update zod schemas for both convo/presets to allow non-EModelEndpoint value as endpoint (also using type assertion) - use `endpointType` value as `endpoint` where mapping to type is necessary using this field - use custom defined `endpoint` value and not type for mapping to modelsConfig - misc: add return type to `getDefaultEndpoint` - in `useNewConvo`, add the endpointType if it wasn't already added to conversation - EndpointsMenu: use user-defined endpoint name as Title in menu - TODO: custom icon via custom config, change unknown to robot icon * refactor(parseConvo): pass args as an object and change where used accordingly; chore: comment out 'create schema' code * chore: remove unused availableModels field in TConfig type * refactor(parseCompactConvo): pass args as an object and change where used accordingly * feat: chat through custom endpoint * chore(message/convoSchemas): avoid saving empty arrays * fix(BaseClient/saveMessageToDatabase): save endpointType * refactor(ChatRoute): show Spinner if endpointsQuery or modelsQuery are still loading, which is apparent with slow fetching of models/remote config on first serve * fix(useConversation): assign endpointType if it's missing * fix(SaveAsPreset): pass real endpoint and endpointType when saving Preset) * chore: recorganize types order for TConfig, add `iconURL` * feat: custom endpoint icon support: - use UnknownIcon in all icon contexts - add mistral and openrouter as known endpoints, and add their icons - iconURL support * fix(presetSchema): move endpointType to default schema definitions shared between convoSchema and defaults * refactor(Settings/OpenAI): remove legacy `isOpenAI` flag * fix(OpenAIClient): do not invoke abortCompletion on completion error * feat: add responseSender/label support for custom endpoints: - use defaultModelLabel field in endpointOption - add model defaults for custom endpoints in `getResponseSender` - add `useGetSender` hook which uses EndpointsQuery to determine `defaultModelLabel` - include defaultModelLabel from endpointConfig in custom endpoint client options - pass `endpointType` to `getResponseSender` * feat(OpenAIClient): use custom options from config file * refactor: rename `defaultModelLabel` to `modelDisplayLabel` * refactor(data-provider): separate concerns from `schemas` into `parsers`, `config`, and fix imports elsewhere * feat: `iconURL` and extract environment variables from custom endpoint config values * feat: custom config validation via zod schema, rename and move to `./projectRoot/librechat.yaml` * docs: custom config docs and examples * fix(OpenAIClient/mistral): mistral does not allow singular system message, also add `useChatCompletion` flag to use openai-node for title completions * fix(custom/initializeClient): extract env var and use `isUserProvided` function * Update librechat.example.yaml * feat(InputWithLabel): add className props, and forwardRef * fix(streamResponse): handle error edge case where either messages or convos query throws an error * fix(useSSE): handle errorHandler edge cases where error response is and is not properly formatted from API, especially when a conversationId is not yet provided, which ensures stream is properly closed on error * feat: user_provided keys for custom endpoints * fix(config/endpointSchema): do not allow default endpoint values in custom endpoint `name` * feat(loadConfigModels): extract env variables and optimize fetching models * feat: support custom endpoint iconURL for messages and Nav * feat(OpenAIClient): add/dropParams support * docs: update docs with default params, add/dropParams, and notes to use config file instead of `OPENAI_REVERSE_PROXY` * docs: update docs with additional notes * feat(maxTokensMap): add mistral models (32k context) * docs: update openrouter notes * Update ai_setup.md * docs(custom_config): add table of contents and fix note about custom name * docs(custom_config): reorder ToC * Update custom_config.md * Add note about `max_tokens` field in custom_config.md
104 lines
4.1 KiB
Markdown
104 lines
4.1 KiB
Markdown
---
|
|
title: 🚅 LiteLLM
|
|
description: Using LibreChat with LiteLLM Proxy
|
|
weight: -7
|
|
---
|
|
|
|
# Using LibreChat with LiteLLM Proxy
|
|
Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
|
|
* Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
|
|
* Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
|
|
* Authentication & Spend Tracking Virtual Keys
|
|
|
|
## Start LiteLLM Proxy Server
|
|
### Pip install litellm
|
|
```shell
|
|
pip install litellm
|
|
```
|
|
|
|
### Create a config.yaml for litellm proxy
|
|
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-eu
|
|
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-ca
|
|
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-large
|
|
api_base: https://openai-france-1234.openai.azure.com/
|
|
api_key:
|
|
rpm: 1440
|
|
```
|
|
|
|
### Start the proxy
|
|
```shell
|
|
litellm --config /path/to/config.yaml
|
|
|
|
#INFO: Proxy running on http://0.0.0.0:8000
|
|
```
|
|
|
|
## Use LiteLLM Proxy Server with LibreChat
|
|
|
|
|
|
#### 1. Clone the repo
|
|
```shell
|
|
git clone https://github.com/danny-avila/LibreChat.git
|
|
```
|
|
|
|
|
|
#### 2. Modify Librechat's `docker-compose.yml`
|
|
```yaml
|
|
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
|
|
```
|
|
|
|
**Important**: As of v0.6.6, it's recommend you use the `librechat.yaml` [Configuration file (guide here)](./custom_config.md) to add Reverse Proxies as separate endpoints.
|
|
|
|
#### 3. Save fake OpenAI key in Librechat's `.env`
|
|
|
|
Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
|
|
```env
|
|
OPENAI_API_KEY=sk-1234
|
|
```
|
|
|
|
#### 4. Run LibreChat:
|
|
```shell
|
|
docker compose up
|
|
```
|
|
|
|
---
|
|
|
|
### Why use LiteLLM?
|
|
|
|
1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.
|
|
|
|
2. **Load Balancing**: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments.
|
|
|
|
3. **Authentication & Spend Tracking**: The server supports virtual keys for authentication and tracks spending.
|
|
|
|
Key components and features include:
|
|
|
|
- **Installation**: Easy installation.
|
|
- **Testing**: Testing features to route requests to specific models.
|
|
- **Server Endpoints**: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation.
|
|
- **Supported LLMs**: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more.
|
|
- **Proxy Configurations**: Allows setting various parameters like model list, server settings, environment variables, and more.
|
|
- **Multiple Models Management**: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts.
|
|
- **Embedding Models Support**: Special configurations for embedding models.
|
|
- **Authentication Management**: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend.
|
|
- **Custom Configurations**: Supports setting model-specific parameters, caching responses, and custom prompt templates.
|
|
- **Debugging Tools**: Options for debugging and logging proxy input/output.
|
|
- **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics.
|
|
- **Proxy CLI Arguments**: A wide range of command-line arguments for customization.
|
|
|
|
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.
|