mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 17:00:15 +01:00
Added all OpenAI, Azure OpenAI, Amazon Bedrock, and Google GCP models available. Specifically latest: Llama3; Google Gemini 1.5 Pro Preview; Claude Opus. Here are all of the models: - model_name: claude-3-haiku - model_name: claude-3-sonnet - model_name: claude-3-opus - model_name: claude-v2 - model_name: claude-instant - model_name: llama2-13b - model_name: llama2-70b - model_name: llama3-8b - model_name: llama3-70b - model_name: mistral-7b-instruct - model_name: mixtral-8x7b-instruct - model_name: mixtral-large - model_name: cohere-command-v14 - model_name: cohere-command-light-v14 - model_name: ai21-j2-mid - model_name: ai21-j2-ultra - model_name: amazon-titan-lite - model_name: amazon-titan-express - model_name: azure-gpt-4-turbo-preview - model_name: azure-gpt-3.5-turbo - model_name: azure-gpt-4 - model_name: azure-gpt-3.5-turbo-16k - model_name: azure-gpt-4-32k - model_name: gpt-4-turbo - model_name: old-gpt-4-turbo-preview - model_name: gpt-3.5-turbo - model_name: gpt-4 - model_name: gpt-3.5-turbo-16k - model_name: gpt-4-32k - model_name: gpt-4-vision-preview - model_name: google-chat-bison - model_name: google-chat-bison-32k - model_name: google-gemini-pro-1.0 - model_name: google-gemini-pro-1.5-preview
386 lines
13 KiB
Markdown
386 lines
13 KiB
Markdown
---
|
|
title: 🚅 LiteLLM
|
|
description: Using LibreChat with LiteLLM Proxy
|
|
weight: -7
|
|
---
|
|
|
|
# Using LibreChat with LiteLLM Proxy
|
|
Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
|
|
|
|
* Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
|
|
* Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
|
|
* Authentication & Spend Tracking Virtual Keys
|
|
|
|
## Start LiteLLM Proxy Server
|
|
### 1. Uncomment desired sections in docker-compose.override.yml
|
|
The override file contains sections for the below LiteLLM features
|
|
|
|
Minimum working `docker-compose.override.yml` Example:
|
|
```
|
|
litellm:
|
|
image: ghcr.io/berriai/litellm:main-latest
|
|
volumes:
|
|
- ./litellm/litellm-config.yaml:/app/config.yaml
|
|
# NOTE: For Google - required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
# This also means you need to add the `application_default_credentaials.json` file within ~/litellm
|
|
- ./litellm/application_default_credentials.json:/app/application_default_credentials.json
|
|
ports:
|
|
- "4000:8000"
|
|
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
|
For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
environment:
|
|
GOOGLE_APPLICATION_CREDENTIALS: /app/application_default_credentials.json
|
|
```
|
|
|
|
#### Caching with Redis
|
|
Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching.
|
|
|
|
#### Performance Monitoring with Langfuse
|
|
Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache.
|
|
|
|
### 2. Create a Config for LiteLLM proxy
|
|
LiteLLM requires a configuration file in addition to the override file. Within LibreChat, this will be `litellm/litellm-config.yml`. The file
|
|
below has the options to enable llm proxy to various providers, load balancing, Redis caching, and Langfuse monitoring. Review documentation for other configuration options.
|
|
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
|
|
|
|
#### Working Example of incorporating OpenAI, Azure OpenAI, AWS Bedrock, and GCP
|
|
|
|
Please note the `...` being a secret or a value you should not share (API key, custom tenant endpoint, etc)
|
|
You can potentially use env variables for these too, ex: `api_key: "os.environ/AZURE_API_KEY" # does os.getenv("AZURE_API_KEY")`
|
|
```yaml
|
|
model_list:
|
|
# https://litellm.vercel.app/docs/proxy/quick_start
|
|
- model_name: claude-3-haiku
|
|
litellm_params:
|
|
model: bedrock/anthropic.claude-3-haiku-20240307-v1:0
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: claude-3-sonnet
|
|
litellm_params:
|
|
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: claude-3-opus
|
|
litellm_params:
|
|
model: bedrock/anthropic.claude-3-opus-20240229-v1:0
|
|
aws_region_name: us-west-2
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: claude-v2
|
|
litellm_params:
|
|
model: bedrock/anthropic.claude-v2:1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: claude-instant
|
|
litellm_params:
|
|
model: bedrock/anthropic.claude-instant-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: llama2-13b
|
|
litellm_params:
|
|
model: bedrock/meta.llama2-13b-chat-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: llama2-70b
|
|
litellm_params:
|
|
model: bedrock/meta.llama2-70b-chat-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: llama3-8b
|
|
litellm_params:
|
|
model: bedrock/meta.llama3-8b-instruct-v1:0
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: llama3-70b
|
|
litellm_params:
|
|
model: bedrock/meta.llama3-70b-instruct-v1:0
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
|
|
- model_name: mistral-7b-instruct
|
|
litellm_params:
|
|
model: bedrock/mistral.mistral-7b-instruct-v0:2
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: mixtral-8x7b-instruct
|
|
litellm_params:
|
|
model: bedrock/mistral.mixtral-8x7b-instruct-v0:1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: mixtral-large
|
|
litellm_params:
|
|
model: bedrock/mistral.mistral-large-2402-v1:0
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: cohere-command-v14
|
|
litellm_params:
|
|
model: bedrock/cohere.command-text-v14
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: cohere-command-light-v14
|
|
litellm_params:
|
|
model: bedrock/cohere.command-light-text-v14
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: ai21-j2-mid
|
|
litellm_params:
|
|
model: bedrock/ai21.j2-mid-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: ai21-j2-ultra
|
|
litellm_params:
|
|
model: bedrock/ai21.j2-ultra-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: amazon-titan-lite
|
|
litellm_params:
|
|
model: bedrock/amazon.titan-text-lite-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
- model_name: amazon-titan-express
|
|
litellm_params:
|
|
model: bedrock/amazon.titan-text-express-v1
|
|
aws_region_name: us-east-1
|
|
aws_access_key_id: A...
|
|
aws_secret_access_key: ...
|
|
|
|
|
|
|
|
|
|
- model_name: azure-gpt-4-turbo-preview
|
|
litellm_params:
|
|
model: azure/gpt-4-turbo-preview
|
|
api_base: https://tenant-name.openai.azure.com/
|
|
api_key: ...
|
|
|
|
- model_name: azure-gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-35-turbo
|
|
api_base: https://tenant-name.openai.azure.com/
|
|
api_key: ...
|
|
|
|
- model_name: azure-gpt-4
|
|
litellm_params:
|
|
model: azure/gpt-4
|
|
api_base: https://tenant-name.openai.azure.com/
|
|
api_key: ...
|
|
|
|
- model_name: azure-gpt-3.5-turbo-16k
|
|
litellm_params:
|
|
model: azure/gpt-35-turbo-16k
|
|
api_base: https://tenant-name.openai.azure.com/
|
|
api_key: ...
|
|
|
|
- model_name: azure-gpt-4-32k
|
|
litellm_params:
|
|
model: azure/gpt-4-32k
|
|
api_base: https://tenant-name.openai.azure.com/
|
|
api_key: ...
|
|
|
|
|
|
|
|
- model_name: gpt-4-turbo
|
|
litellm_params:
|
|
model: gpt-4-turbo
|
|
api_key: ...
|
|
|
|
- model_name: old-gpt-4-turbo-preview
|
|
litellm_params:
|
|
model: gpt-4-turbo-preview
|
|
api_key: ...
|
|
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
api_key: ...
|
|
|
|
- model_name: gpt-4
|
|
litellm_params:
|
|
model: gpt-4
|
|
api_key: ...
|
|
|
|
- model_name: gpt-3.5-turbo-16k
|
|
litellm_params:
|
|
model: gpt-3.5-turbo-16k
|
|
api_key: ...
|
|
|
|
- model_name: gpt-4-32k
|
|
litellm_params:
|
|
model: gpt-4-32k
|
|
api_key: ...
|
|
|
|
- model_name: gpt-4-vision-preview
|
|
litellm_params:
|
|
model: gpt-4-vision-preview
|
|
api_key: ...
|
|
|
|
|
|
|
|
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
- model_name: google-chat-bison
|
|
litellm_params:
|
|
model: vertex_ai/chat-bison
|
|
vertex_project: gcp-proj-name
|
|
vertex_location: us-central1
|
|
|
|
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
- model_name: google-chat-bison-32k
|
|
litellm_params:
|
|
model: vertex_ai/chat-bison-32k
|
|
vertex_project: gcp-proj-name
|
|
vertex_location: us-central1
|
|
|
|
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
- model_name: google-gemini-pro-1.0
|
|
litellm_params:
|
|
model: vertex_ai/gemini-pro
|
|
vertex_project: gcp-proj-name
|
|
vertex_location: us-central1
|
|
|
|
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
|
- model_name: google-gemini-pro-1.5-preview
|
|
litellm_params:
|
|
model: vertex_ai/gemini-1.5-pro-preview-0409
|
|
vertex_project: gcp-proj-name
|
|
vertex_location: us-central1
|
|
|
|
# NOTE: It may be a good idea to comment out "success_callback", "cache", "cache_params" (both lines under) when you first start until this works!
|
|
litellm_settings:
|
|
success_callback: ["langfuse"]
|
|
cache: True
|
|
cache_params:
|
|
type: "redis"
|
|
supported_call_types: ["acompletion", "completion", "embedding", "aembedding"]
|
|
general_settings:
|
|
master_key: sk_live_SetToRandomValue
|
|
```
|
|
|
|
#### Example of a few Different Options (ex: rpm, stream, ollama)
|
|
```yaml
|
|
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-eu
|
|
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-ca
|
|
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
|
api_key:
|
|
rpm: 6
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-large
|
|
api_base: https://openai-france-1234.openai.azure.com/
|
|
api_key:
|
|
rpm: 1440
|
|
- model_name: mixtral
|
|
litellm_params:
|
|
model: openai/mixtral:8x7b-instruct-v0.1-q5_K_M # use openai/* for ollama's openai api compatibility
|
|
api_base: http://ollama:11434/v1
|
|
stream: True
|
|
- model_name: mistral
|
|
litellm_params:
|
|
model: openai/mistral # use openai/* for ollama's openai api compatibility
|
|
api_base: http://ollama:11434/v1
|
|
stream: True
|
|
litellm_settings:
|
|
success_callback: ["langfuse"]
|
|
cache: True
|
|
cache_params:
|
|
type: "redis"
|
|
supported_call_types: ["acompletion", "completion", "embedding", "aembedding"]
|
|
general_settings:
|
|
master_key: sk_live_SetToRandomValue
|
|
```
|
|
|
|
|
|
|
|
### 3. Configure LibreChat
|
|
|
|
Use `librechat.yaml` [Configuration file (guide here)](./ai_endpoints.md) to add Reverse Proxies as separate endpoints.
|
|
|
|
Here is an example config:
|
|
|
|
```
|
|
custom:
|
|
- name: "Lite LLM"
|
|
# A place holder - otherwise it becomes the default (OpenAI) key
|
|
# Provide the key instead in each "model" block within "litellm/litellm-config.yaml"
|
|
apiKey: "sk-from-config-file"
|
|
# See the required changes above in "Start LiteLLM Proxy Server" step.
|
|
baseURL: "http://host.docker.internal:4000"
|
|
# A "default" model to start new users with. The "fetch" will pull the rest of the available models from LiteLLM
|
|
# More or less this is "irrelevant", you can pick any model. Just pick one you have defined in LiteLLM.
|
|
models:
|
|
default: ["gpt-3.5-turbo"]
|
|
fetch: true
|
|
titleConvo: true
|
|
titleModel: "gpt-3.5-turbo"
|
|
summarize: false
|
|
summaryModel: "gpt-3.5-turbo"
|
|
forcePrompt: false
|
|
modelDisplayLabel: "Lite LLM"
|
|
```
|
|
---
|
|
|
|
### Why use LiteLLM?
|
|
|
|
1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.
|
|
|
|
2. **Load Balancing**: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments.
|
|
|
|
3. **Authentication & Spend Tracking**: The server supports virtual keys for authentication and tracks spending.
|
|
|
|
Key components and features include:
|
|
|
|
- **Installation**: Easy installation.
|
|
- **Testing**: Testing features to route requests to specific models.
|
|
- **Server Endpoints**: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation.
|
|
- **Supported LLMs**: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more.
|
|
- **Proxy Configurations**: Allows setting various parameters like model list, server settings, environment variables, and more.
|
|
- **Multiple Models Management**: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts.
|
|
- **Embedding Models Support**: Special configurations for embedding models.
|
|
- **Authentication Management**: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend.
|
|
- **Custom Configurations**: Supports setting model-specific parameters, caching responses, and custom prompt templates.
|
|
- **Debugging Tools**: Options for debugging and logging proxy input/output.
|
|
- **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics.
|
|
- **Proxy CLI Arguments**: A wide range of command-line arguments for customization.
|
|
|
|
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.
|