LibreChat/api/server/controllers/agents/openai.js
Danny Avila 9a38af5875
📉 feat: Add Token Usage Tracking for Agents API Routes (#11600)
* feat: Implement token usage tracking for OpenAI and Responses controllers

- Added functionality to record token usage against user balances in OpenAIChatCompletionController and createResponse functions.
- Introduced new utility functions for managing token spending and structured token usage.
- Enhanced error handling for token recording to improve logging and debugging capabilities.
- Updated imports to include new usage tracking methods and configurations.

* test: Add unit tests for recordCollectedUsage function in usage.spec.ts

- Introduced comprehensive tests for the recordCollectedUsage function, covering various scenarios including handling empty and null collectedUsage, single and multiple usage entries, and sequential and parallel execution cases.
- Enhanced token handling tests to ensure correct calculations for both OpenAI and Anthropic formats, including cache token management.
- Improved overall test coverage for usage tracking functionality, ensuring robust validation of expected behaviors and outcomes.

* test: Add unit tests for OpenAI and Responses API controllers

- Introduced comprehensive unit tests for the OpenAIChatCompletionController and createResponse functions, focusing on the correct invocation of recordCollectedUsage for token spending.
- Enhanced tests to validate the passing of balance and transactions configuration to the recordCollectedUsage function.
- Ensured proper dependency injection of spendTokens and spendStructuredTokens in the usage recording process.
- Improved overall test coverage for token usage tracking, ensuring robust validation of expected behaviors and outcomes.
2026-02-01 21:36:51 -05:00

709 lines
20 KiB
JavaScript

const { nanoid } = require('nanoid');
const { logger } = require('@librechat/data-schemas');
const { EModelEndpoint, ResourceType, PermissionBits } = require('librechat-data-provider');
const {
Callback,
ToolEndHandler,
formatAgentMessages,
ChatModelStreamHandler,
} = require('@librechat/agents');
const {
writeSSE,
createRun,
createChunk,
buildToolSet,
sendFinalChunk,
createSafeUser,
validateRequest,
initializeAgent,
getBalanceConfig,
createErrorResponse,
recordCollectedUsage,
getTransactionsConfig,
createToolExecuteHandler,
buildNonStreamingResponse,
createOpenAIStreamTracker,
createOpenAIContentAggregator,
isChatCompletionValidationFailure,
} = require('@librechat/api');
const { loadAgentTools, loadToolsForExecution } = require('~/server/services/ToolService');
const { createToolEndCallback } = require('~/server/controllers/agents/callbacks');
const { findAccessibleResources } = require('~/server/services/PermissionService');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getConvoFiles } = require('~/models/Conversation');
const { getAgent, getAgents } = require('~/models/Agent');
const db = require('~/models');
/**
* Creates a tool loader function for the agent.
* @param {AbortSignal} signal - The abort signal
* @param {boolean} [definitionsOnly=true] - When true, returns only serializable
* tool definitions without creating full tool instances (for event-driven mode)
*/
function createToolLoader(signal, definitionsOnly = true) {
return async function loadTools({
req,
res,
tools,
model,
agentId,
provider,
tool_options,
tool_resources,
}) {
const agent = { id: agentId, tools, provider, model, tool_options };
try {
return await loadAgentTools({
req,
res,
agent,
signal,
tool_resources,
definitionsOnly,
streamId: null, // No resumable stream for OpenAI compat
});
} catch (error) {
logger.error('Error loading tools for agent ' + agentId, error);
}
};
}
/**
* Convert content part to internal format
* @param {Object} part - Content part
* @returns {Object} Converted part
*/
function convertContentPart(part) {
if (part.type === 'text') {
return { type: 'text', text: part.text };
}
if (part.type === 'image_url') {
return { type: 'image_url', image_url: part.image_url };
}
return part;
}
/**
* Convert OpenAI messages to internal format
* @param {Array} messages - OpenAI format messages
* @returns {Array} Internal format messages
*/
function convertMessages(messages) {
return messages.map((msg) => {
let content;
if (typeof msg.content === 'string') {
content = msg.content;
} else if (msg.content) {
content = msg.content.map(convertContentPart);
} else {
content = '';
}
return {
role: msg.role,
content,
...(msg.name && { name: msg.name }),
...(msg.tool_calls && { tool_calls: msg.tool_calls }),
...(msg.tool_call_id && { tool_call_id: msg.tool_call_id }),
};
});
}
/**
* Send an error response in OpenAI format
*/
function sendErrorResponse(res, statusCode, message, type = 'invalid_request_error', code = null) {
res.status(statusCode).json(createErrorResponse(message, type, code));
}
/**
* OpenAI-compatible chat completions controller for agents.
*
* POST /v1/chat/completions
*
* Request format:
* {
* "model": "agent_id_here",
* "messages": [{"role": "user", "content": "Hello!"}],
* "stream": true,
* "conversation_id": "optional",
* "parent_message_id": "optional"
* }
*/
const OpenAIChatCompletionController = async (req, res) => {
const appConfig = req.config;
const requestStartTime = Date.now();
// Validate request
const validation = validateRequest(req.body);
if (isChatCompletionValidationFailure(validation)) {
return sendErrorResponse(res, 400, validation.error);
}
const request = validation.request;
const agentId = request.model;
// Look up the agent
const agent = await getAgent({ id: agentId });
if (!agent) {
return sendErrorResponse(
res,
404,
`Agent not found: ${agentId}`,
'invalid_request_error',
'model_not_found',
);
}
// Generate IDs
const requestId = `chatcmpl-${nanoid()}`;
const conversationId = request.conversation_id ?? nanoid();
const parentMessageId = request.parent_message_id ?? null;
const created = Math.floor(Date.now() / 1000);
const context = {
created,
requestId,
model: agentId,
};
logger.debug(
`[OpenAI API] Request ${requestId} started for agent ${agentId}, stream: ${request.stream}`,
);
// Set up abort controller
const abortController = new AbortController();
// Handle client disconnect
req.on('close', () => {
if (!abortController.signal.aborted) {
abortController.abort();
logger.debug('[OpenAI API] Client disconnected, aborting');
}
});
try {
// Build allowed providers set
const allowedProviders = new Set(
appConfig?.endpoints?.[EModelEndpoint.agents]?.allowedProviders,
);
// Create tool loader
const loadTools = createToolLoader(abortController.signal);
// Initialize the agent first to check for disableStreaming
const endpointOption = {
endpoint: agent.provider,
model_parameters: agent.model_parameters ?? {},
};
const primaryConfig = await initializeAgent(
{
req,
res,
loadTools,
requestFiles: [],
conversationId,
parentMessageId,
agent,
endpointOption,
allowedProviders,
isInitialAgent: true,
},
{
getConvoFiles,
getFiles: db.getFiles,
getUserKey: db.getUserKey,
getMessages: db.getMessages,
updateFilesUsage: db.updateFilesUsage,
getUserKeyValues: db.getUserKeyValues,
getUserCodeFiles: db.getUserCodeFiles,
getToolFilesByIds: db.getToolFilesByIds,
getCodeGeneratedFiles: db.getCodeGeneratedFiles,
},
);
// Determine if streaming is enabled (check both request and agent config)
const streamingDisabled = !!primaryConfig.model_parameters?.disableStreaming;
const isStreaming = request.stream === true && !streamingDisabled;
// Create tracker for streaming or aggregator for non-streaming
const tracker = isStreaming ? createOpenAIStreamTracker() : null;
const aggregator = isStreaming ? null : createOpenAIContentAggregator();
// Set up response for streaming
if (isStreaming) {
res.setHeader('Content-Type', 'text/event-stream');
res.setHeader('Cache-Control', 'no-cache');
res.setHeader('Connection', 'keep-alive');
res.setHeader('X-Accel-Buffering', 'no');
res.flushHeaders();
// Send initial chunk with role
const initialChunk = createChunk(context, { role: 'assistant' });
writeSSE(res, initialChunk);
}
// Create handler config for OpenAI streaming (only used when streaming)
const handlerConfig = isStreaming
? {
res,
context,
tracker,
}
: null;
const collectedUsage = [];
/** @type {Promise<import('librechat-data-provider').TAttachment | null>[]} */
const artifactPromises = [];
const toolEndCallback = createToolEndCallback({ req, res, artifactPromises, streamId: null });
const toolExecuteOptions = {
loadTools: async (toolNames) => {
return loadToolsForExecution({
req,
res,
agent,
toolNames,
signal: abortController.signal,
toolRegistry: primaryConfig.toolRegistry,
userMCPAuthMap: primaryConfig.userMCPAuthMap,
tool_resources: primaryConfig.tool_resources,
});
},
toolEndCallback,
};
const openaiMessages = convertMessages(request.messages);
const toolSet = buildToolSet(primaryConfig);
const { messages: formattedMessages, indexTokenCountMap } = formatAgentMessages(
openaiMessages,
{},
toolSet,
);
/**
* Create a simple handler that processes data
*/
const createHandler = (processor) => ({
handle: (_event, data) => {
if (processor) {
processor(data);
}
},
});
/**
* Stream text content in OpenAI format
*/
const streamText = (text) => {
if (!text) {
return;
}
if (isStreaming) {
tracker.addText();
writeSSE(res, createChunk(context, { content: text }));
} else {
aggregator.addText(text);
}
};
/**
* Stream reasoning content in OpenAI format (OpenRouter convention)
*/
const streamReasoning = (text) => {
if (!text) {
return;
}
if (isStreaming) {
tracker.addReasoning();
writeSSE(res, createChunk(context, { reasoning: text }));
} else {
aggregator.addReasoning(text);
}
};
// Built-in handler for processing raw model stream chunks
const chatModelStreamHandler = new ChatModelStreamHandler();
// Event handlers for OpenAI-compatible streaming
const handlers = {
// Process raw model chunks and dispatch message/reasoning deltas
on_chat_model_stream: {
handle: async (event, data, metadata, graph) => {
await chatModelStreamHandler.handle(event, data, metadata, graph);
},
},
// Text content streaming
on_message_delta: createHandler((data) => {
const content = data?.delta?.content;
if (Array.isArray(content)) {
for (const part of content) {
if (part.type === 'text' && part.text) {
streamText(part.text);
}
}
}
}),
// Reasoning/thinking content streaming
on_reasoning_delta: createHandler((data) => {
const content = data?.delta?.content;
if (Array.isArray(content)) {
for (const part of content) {
const text = part.think || part.text;
if (text) {
streamReasoning(text);
}
}
}
}),
// Tool call initiation - streams id and name (from on_run_step)
on_run_step: createHandler((data) => {
const stepDetails = data?.stepDetails;
if (stepDetails?.type === 'tool_calls' && stepDetails.tool_calls) {
for (const tc of stepDetails.tool_calls) {
const toolIndex = data.index ?? 0;
const toolId = tc.id ?? '';
const toolName = tc.name ?? '';
const toolCall = {
id: toolId,
type: 'function',
function: { name: toolName, arguments: '' },
};
// Track tool call in tracker or aggregator
if (isStreaming) {
if (!tracker.toolCalls.has(toolIndex)) {
tracker.toolCalls.set(toolIndex, toolCall);
}
// Stream initial tool call chunk (like OpenAI does)
writeSSE(
res,
createChunk(context, {
tool_calls: [{ index: toolIndex, ...toolCall }],
}),
);
} else {
if (!aggregator.toolCalls.has(toolIndex)) {
aggregator.toolCalls.set(toolIndex, toolCall);
}
}
}
}
}),
// Tool call argument streaming (from on_run_step_delta)
on_run_step_delta: createHandler((data) => {
const delta = data?.delta;
if (delta?.type === 'tool_calls' && delta.tool_calls) {
for (const tc of delta.tool_calls) {
const args = tc.args ?? '';
if (!args) {
continue;
}
const toolIndex = tc.index ?? 0;
// Update tool call arguments
const targetMap = isStreaming ? tracker.toolCalls : aggregator.toolCalls;
const tracked = targetMap.get(toolIndex);
if (tracked) {
tracked.function.arguments += args;
}
// Stream argument delta (only for streaming)
if (isStreaming) {
writeSSE(
res,
createChunk(context, {
tool_calls: [
{
index: toolIndex,
function: { arguments: args },
},
],
}),
);
}
}
}
}),
// Usage tracking
on_chat_model_end: createHandler((data) => {
const usage = data?.output?.usage_metadata;
if (usage) {
collectedUsage.push(usage);
const target = isStreaming ? tracker : aggregator;
target.usage.promptTokens += usage.input_tokens ?? 0;
target.usage.completionTokens += usage.output_tokens ?? 0;
}
}),
on_run_step_completed: createHandler(),
// Use proper ToolEndHandler for processing artifacts (images, file citations, code output)
on_tool_end: new ToolEndHandler(toolEndCallback, logger),
on_chain_stream: createHandler(),
on_chain_end: createHandler(),
on_agent_update: createHandler(),
on_custom_event: createHandler(),
// Event-driven tool execution handler
on_tool_execute: createToolExecuteHandler(toolExecuteOptions),
};
// Create and run the agent
const userId = req.user?.id ?? 'api-user';
// Extract userMCPAuthMap from primaryConfig (needed for MCP tool connections)
const userMCPAuthMap = primaryConfig.userMCPAuthMap;
const run = await createRun({
agents: [primaryConfig],
messages: formattedMessages,
indexTokenCountMap,
runId: requestId,
signal: abortController.signal,
customHandlers: handlers,
requestBody: {
messageId: requestId,
conversationId,
},
user: { id: userId },
});
if (!run) {
throw new Error('Failed to create agent run');
}
// Process the stream
const config = {
runName: 'AgentRun',
configurable: {
thread_id: conversationId,
user_id: userId,
user: createSafeUser(req.user),
...(userMCPAuthMap != null && { userMCPAuthMap }),
},
signal: abortController.signal,
streamMode: 'values',
version: 'v2',
};
await run.processStream({ messages: formattedMessages }, config, {
callbacks: {
[Callback.TOOL_ERROR]: (graph, error, toolId) => {
logger.error(`[OpenAI API] Tool Error "${toolId}"`, error);
},
},
});
// Record token usage against balance
const balanceConfig = getBalanceConfig(appConfig);
const transactionsConfig = getTransactionsConfig(appConfig);
recordCollectedUsage(
{ spendTokens, spendStructuredTokens },
{
user: userId,
conversationId,
collectedUsage,
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
model: primaryConfig.model || agent.model_parameters?.model,
},
).catch((err) => {
logger.error('[OpenAI API] Error recording usage:', err);
});
// Finalize response
const duration = Date.now() - requestStartTime;
if (isStreaming) {
sendFinalChunk(handlerConfig);
res.end();
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (streaming)`);
// Wait for artifact processing after response ends (non-blocking)
if (artifactPromises.length > 0) {
Promise.all(artifactPromises).catch((artifactError) => {
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
});
}
} else {
// For non-streaming, wait for artifacts before sending response
if (artifactPromises.length > 0) {
try {
await Promise.all(artifactPromises);
} catch (artifactError) {
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
}
}
// Build usage from aggregated data
const usage = {
prompt_tokens: aggregator.usage.promptTokens,
completion_tokens: aggregator.usage.completionTokens,
total_tokens: aggregator.usage.promptTokens + aggregator.usage.completionTokens,
};
if (aggregator.usage.reasoningTokens > 0) {
usage.completion_tokens_details = {
reasoning_tokens: aggregator.usage.reasoningTokens,
};
}
const response = buildNonStreamingResponse(
context,
aggregator.getText(),
aggregator.getReasoning(),
aggregator.toolCalls,
usage,
);
res.json(response);
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (non-streaming)`);
}
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'An error occurred';
logger.error('[OpenAI API] Error:', error);
// Check if we already started streaming (headers sent)
if (res.headersSent) {
// Headers already sent, send error in stream
const errorChunk = createChunk(context, { content: `\n\nError: ${errorMessage}` }, 'stop');
writeSSE(res, errorChunk);
writeSSE(res, '[DONE]');
res.end();
} else {
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
}
};
/**
* List available agents as models (filtered by remote access permissions)
*
* GET /v1/models
*/
const ListModelsController = async (req, res) => {
try {
const userId = req.user?.id;
const userRole = req.user?.role;
if (!userId) {
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
}
// Find agents the user has remote access to (VIEW permission on REMOTE_AGENT)
const accessibleAgentIds = await findAccessibleResources({
userId,
role: userRole,
resourceType: ResourceType.REMOTE_AGENT,
requiredPermissions: PermissionBits.VIEW,
});
// Get the accessible agents
let agents = [];
if (accessibleAgentIds.length > 0) {
agents = await getAgents({ _id: { $in: accessibleAgentIds } });
}
const models = agents.map((agent) => ({
id: agent.id,
object: 'model',
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
owned_by: 'librechat',
permission: [],
root: agent.id,
parent: null,
// LibreChat extensions
name: agent.name,
description: agent.description,
provider: agent.provider,
}));
res.json({
object: 'list',
data: models,
});
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'Failed to list models';
logger.error('[OpenAI API] Error listing models:', error);
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
};
/**
* Get a specific model/agent (with remote access permission check)
*
* GET /v1/models/:model
*/
const GetModelController = async (req, res) => {
try {
const { model } = req.params;
const userId = req.user?.id;
const userRole = req.user?.role;
if (!userId) {
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
}
const agent = await getAgent({ id: model });
if (!agent) {
return sendErrorResponse(
res,
404,
`Model not found: ${model}`,
'invalid_request_error',
'model_not_found',
);
}
// Check if user has remote access to this agent
const accessibleAgentIds = await findAccessibleResources({
userId,
role: userRole,
resourceType: ResourceType.REMOTE_AGENT,
requiredPermissions: PermissionBits.VIEW,
});
const hasAccess = accessibleAgentIds.some((id) => id.toString() === agent._id.toString());
if (!hasAccess) {
return sendErrorResponse(
res,
403,
`No remote access to model: ${model}`,
'permission_error',
'access_denied',
);
}
res.json({
id: agent.id,
object: 'model',
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
owned_by: 'librechat',
permission: [],
root: agent.id,
parent: null,
// LibreChat extensions
name: agent.name,
description: agent.description,
provider: agent.provider,
});
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'Failed to get model';
logger.error('[OpenAI API] Error getting model:', error);
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
};
module.exports = {
OpenAIChatCompletionController,
ListModelsController,
GetModelController,
};