📉 feat: Add Token Usage Tracking for Agents API Routes (#11600)

* feat: Implement token usage tracking for OpenAI and Responses controllers

- Added functionality to record token usage against user balances in OpenAIChatCompletionController and createResponse functions.
- Introduced new utility functions for managing token spending and structured token usage.
- Enhanced error handling for token recording to improve logging and debugging capabilities.
- Updated imports to include new usage tracking methods and configurations.

* test: Add unit tests for recordCollectedUsage function in usage.spec.ts

- Introduced comprehensive tests for the recordCollectedUsage function, covering various scenarios including handling empty and null collectedUsage, single and multiple usage entries, and sequential and parallel execution cases.
- Enhanced token handling tests to ensure correct calculations for both OpenAI and Anthropic formats, including cache token management.
- Improved overall test coverage for usage tracking functionality, ensuring robust validation of expected behaviors and outcomes.

* test: Add unit tests for OpenAI and Responses API controllers

- Introduced comprehensive unit tests for the OpenAIChatCompletionController and createResponse functions, focusing on the correct invocation of recordCollectedUsage for token spending.
- Enhanced tests to validate the passing of balance and transactions configuration to the recordCollectedUsage function.
- Ensured proper dependency injection of spendTokens and spendStructuredTokens in the usage recording process.
- Improved overall test coverage for token usage tracking, ensuring robust validation of expected behaviors and outcomes.
This commit is contained in:
Danny Avila 2026-02-01 21:36:51 -05:00 committed by GitHub
parent d13037881a
commit 9a38af5875
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 1190 additions and 3 deletions

View file

@ -0,0 +1,207 @@
/**
* Unit tests for OpenAI-compatible API controller
* Tests that recordCollectedUsage is called correctly for token spending
*/
const mockSpendTokens = jest.fn().mockResolvedValue({});
const mockSpendStructuredTokens = jest.fn().mockResolvedValue({});
const mockRecordCollectedUsage = jest
.fn()
.mockResolvedValue({ input_tokens: 100, output_tokens: 50 });
const mockGetBalanceConfig = jest.fn().mockReturnValue({ enabled: true });
const mockGetTransactionsConfig = jest.fn().mockReturnValue({ enabled: true });
jest.mock('nanoid', () => ({
nanoid: jest.fn(() => 'mock-nanoid-123'),
}));
jest.mock('@librechat/data-schemas', () => ({
logger: {
debug: jest.fn(),
error: jest.fn(),
warn: jest.fn(),
},
}));
jest.mock('@librechat/agents', () => ({
Callback: { TOOL_ERROR: 'TOOL_ERROR' },
ToolEndHandler: jest.fn(),
formatAgentMessages: jest.fn().mockReturnValue({
messages: [],
indexTokenCountMap: {},
}),
ChatModelStreamHandler: jest.fn().mockImplementation(() => ({
handle: jest.fn(),
})),
}));
jest.mock('@librechat/api', () => ({
writeSSE: jest.fn(),
createRun: jest.fn().mockResolvedValue({
processStream: jest.fn().mockResolvedValue(undefined),
}),
createChunk: jest.fn().mockReturnValue({}),
buildToolSet: jest.fn().mockReturnValue(new Set()),
sendFinalChunk: jest.fn(),
createSafeUser: jest.fn().mockReturnValue({ id: 'user-123' }),
validateRequest: jest
.fn()
.mockReturnValue({ request: { model: 'agent-123', messages: [], stream: false } }),
initializeAgent: jest.fn().mockResolvedValue({
model: 'gpt-4',
model_parameters: {},
toolRegistry: {},
}),
getBalanceConfig: mockGetBalanceConfig,
createErrorResponse: jest.fn(),
getTransactionsConfig: mockGetTransactionsConfig,
recordCollectedUsage: mockRecordCollectedUsage,
buildNonStreamingResponse: jest.fn().mockReturnValue({ id: 'resp-123' }),
createOpenAIStreamTracker: jest.fn().mockReturnValue({
addText: jest.fn(),
addReasoning: jest.fn(),
toolCalls: new Map(),
usage: { promptTokens: 0, completionTokens: 0, reasoningTokens: 0 },
}),
createOpenAIContentAggregator: jest.fn().mockReturnValue({
addText: jest.fn(),
addReasoning: jest.fn(),
getText: jest.fn().mockReturnValue(''),
getReasoning: jest.fn().mockReturnValue(''),
toolCalls: new Map(),
usage: { promptTokens: 100, completionTokens: 50, reasoningTokens: 0 },
}),
createToolExecuteHandler: jest.fn().mockReturnValue({ handle: jest.fn() }),
isChatCompletionValidationFailure: jest.fn().mockReturnValue(false),
}));
jest.mock('~/server/services/ToolService', () => ({
loadAgentTools: jest.fn().mockResolvedValue([]),
loadToolsForExecution: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models/spendTokens', () => ({
spendTokens: mockSpendTokens,
spendStructuredTokens: mockSpendStructuredTokens,
}));
jest.mock('~/server/controllers/agents/callbacks', () => ({
createToolEndCallback: jest.fn().mockReturnValue(jest.fn()),
}));
jest.mock('~/server/services/PermissionService', () => ({
findAccessibleResources: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models/Conversation', () => ({
getConvoFiles: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models/Agent', () => ({
getAgent: jest.fn().mockResolvedValue({
id: 'agent-123',
provider: 'openAI',
model_parameters: { model: 'gpt-4' },
}),
getAgents: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models', () => ({
getFiles: jest.fn(),
getUserKey: jest.fn(),
getMessages: jest.fn(),
updateFilesUsage: jest.fn(),
getUserKeyValues: jest.fn(),
getUserCodeFiles: jest.fn(),
getToolFilesByIds: jest.fn(),
getCodeGeneratedFiles: jest.fn(),
}));
describe('OpenAIChatCompletionController', () => {
let OpenAIChatCompletionController;
let req, res;
beforeEach(() => {
jest.clearAllMocks();
const controller = require('../openai');
OpenAIChatCompletionController = controller.OpenAIChatCompletionController;
req = {
body: {
model: 'agent-123',
messages: [{ role: 'user', content: 'Hello' }],
stream: false,
},
user: { id: 'user-123' },
config: {
endpoints: {
agents: { allowedProviders: ['openAI'] },
},
},
on: jest.fn(),
};
res = {
status: jest.fn().mockReturnThis(),
json: jest.fn(),
setHeader: jest.fn(),
flushHeaders: jest.fn(),
end: jest.fn(),
write: jest.fn(),
};
});
describe('token usage recording', () => {
it('should call recordCollectedUsage after successful non-streaming completion', async () => {
await OpenAIChatCompletionController(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledTimes(1);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
{ spendTokens: mockSpendTokens, spendStructuredTokens: mockSpendStructuredTokens },
expect.objectContaining({
user: 'user-123',
conversationId: expect.any(String),
collectedUsage: expect.any(Array),
context: 'message',
balance: { enabled: true },
transactions: { enabled: true },
}),
);
});
it('should pass balance and transactions config to recordCollectedUsage', async () => {
mockGetBalanceConfig.mockReturnValue({ enabled: true, startBalance: 1000 });
mockGetTransactionsConfig.mockReturnValue({ enabled: true, rateLimit: 100 });
await OpenAIChatCompletionController(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
expect.any(Object),
expect.objectContaining({
balance: { enabled: true, startBalance: 1000 },
transactions: { enabled: true, rateLimit: 100 },
}),
);
});
it('should pass spendTokens and spendStructuredTokens as dependencies', async () => {
await OpenAIChatCompletionController(req, res);
const [deps] = mockRecordCollectedUsage.mock.calls[0];
expect(deps).toHaveProperty('spendTokens', mockSpendTokens);
expect(deps).toHaveProperty('spendStructuredTokens', mockSpendStructuredTokens);
});
it('should include model from primaryConfig in recordCollectedUsage params', async () => {
await OpenAIChatCompletionController(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
expect.any(Object),
expect.objectContaining({
model: 'gpt-4',
}),
);
});
});
});

View file

@ -0,0 +1,315 @@
/**
* Unit tests for Open Responses API controller
* Tests that recordCollectedUsage is called correctly for token spending
*/
const mockSpendTokens = jest.fn().mockResolvedValue({});
const mockSpendStructuredTokens = jest.fn().mockResolvedValue({});
const mockRecordCollectedUsage = jest
.fn()
.mockResolvedValue({ input_tokens: 100, output_tokens: 50 });
const mockGetBalanceConfig = jest.fn().mockReturnValue({ enabled: true });
const mockGetTransactionsConfig = jest.fn().mockReturnValue({ enabled: true });
jest.mock('nanoid', () => ({
nanoid: jest.fn(() => 'mock-nanoid-123'),
}));
jest.mock('uuid', () => ({
v4: jest.fn(() => 'mock-uuid-456'),
}));
jest.mock('@librechat/data-schemas', () => ({
logger: {
debug: jest.fn(),
error: jest.fn(),
warn: jest.fn(),
},
}));
jest.mock('@librechat/agents', () => ({
Callback: { TOOL_ERROR: 'TOOL_ERROR' },
ToolEndHandler: jest.fn(),
formatAgentMessages: jest.fn().mockReturnValue({
messages: [],
indexTokenCountMap: {},
}),
ChatModelStreamHandler: jest.fn().mockImplementation(() => ({
handle: jest.fn(),
})),
}));
jest.mock('@librechat/api', () => ({
createRun: jest.fn().mockResolvedValue({
processStream: jest.fn().mockResolvedValue(undefined),
}),
buildToolSet: jest.fn().mockReturnValue(new Set()),
createSafeUser: jest.fn().mockReturnValue({ id: 'user-123' }),
initializeAgent: jest.fn().mockResolvedValue({
model: 'claude-3',
model_parameters: {},
toolRegistry: {},
}),
getBalanceConfig: mockGetBalanceConfig,
getTransactionsConfig: mockGetTransactionsConfig,
recordCollectedUsage: mockRecordCollectedUsage,
createToolExecuteHandler: jest.fn().mockReturnValue({ handle: jest.fn() }),
// Responses API
writeDone: jest.fn(),
buildResponse: jest.fn().mockReturnValue({ id: 'resp_123', output: [] }),
generateResponseId: jest.fn().mockReturnValue('resp_mock-123'),
isValidationFailure: jest.fn().mockReturnValue(false),
emitResponseCreated: jest.fn(),
createResponseContext: jest.fn().mockReturnValue({ responseId: 'resp_123' }),
createResponseTracker: jest.fn().mockReturnValue({
usage: { promptTokens: 100, completionTokens: 50 },
}),
setupStreamingResponse: jest.fn(),
emitResponseInProgress: jest.fn(),
convertInputToMessages: jest.fn().mockReturnValue([]),
validateResponseRequest: jest.fn().mockReturnValue({
request: { model: 'agent-123', input: 'Hello', stream: false },
}),
buildAggregatedResponse: jest.fn().mockReturnValue({
id: 'resp_123',
status: 'completed',
output: [],
usage: { input_tokens: 100, output_tokens: 50, total_tokens: 150 },
}),
createResponseAggregator: jest.fn().mockReturnValue({
usage: { promptTokens: 100, completionTokens: 50 },
}),
sendResponsesErrorResponse: jest.fn(),
createResponsesEventHandlers: jest.fn().mockReturnValue({
handlers: {
on_message_delta: { handle: jest.fn() },
on_reasoning_delta: { handle: jest.fn() },
on_run_step: { handle: jest.fn() },
on_run_step_delta: { handle: jest.fn() },
on_chat_model_end: { handle: jest.fn() },
},
finalizeStream: jest.fn(),
}),
createAggregatorEventHandlers: jest.fn().mockReturnValue({
on_message_delta: { handle: jest.fn() },
on_reasoning_delta: { handle: jest.fn() },
on_run_step: { handle: jest.fn() },
on_run_step_delta: { handle: jest.fn() },
on_chat_model_end: { handle: jest.fn() },
}),
}));
jest.mock('~/server/services/ToolService', () => ({
loadAgentTools: jest.fn().mockResolvedValue([]),
loadToolsForExecution: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models/spendTokens', () => ({
spendTokens: mockSpendTokens,
spendStructuredTokens: mockSpendStructuredTokens,
}));
jest.mock('~/server/controllers/agents/callbacks', () => ({
createToolEndCallback: jest.fn().mockReturnValue(jest.fn()),
createResponsesToolEndCallback: jest.fn().mockReturnValue(jest.fn()),
}));
jest.mock('~/server/services/PermissionService', () => ({
findAccessibleResources: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models/Conversation', () => ({
getConvoFiles: jest.fn().mockResolvedValue([]),
saveConvo: jest.fn().mockResolvedValue({}),
getConvo: jest.fn().mockResolvedValue(null),
}));
jest.mock('~/models/Agent', () => ({
getAgent: jest.fn().mockResolvedValue({
id: 'agent-123',
name: 'Test Agent',
provider: 'anthropic',
model_parameters: { model: 'claude-3' },
}),
getAgents: jest.fn().mockResolvedValue([]),
}));
jest.mock('~/models', () => ({
getFiles: jest.fn(),
getUserKey: jest.fn(),
getMessages: jest.fn().mockResolvedValue([]),
saveMessage: jest.fn().mockResolvedValue({}),
updateFilesUsage: jest.fn(),
getUserKeyValues: jest.fn(),
getUserCodeFiles: jest.fn(),
getToolFilesByIds: jest.fn(),
getCodeGeneratedFiles: jest.fn(),
}));
describe('createResponse controller', () => {
let createResponse;
let req, res;
beforeEach(() => {
jest.clearAllMocks();
const controller = require('../responses');
createResponse = controller.createResponse;
req = {
body: {
model: 'agent-123',
input: 'Hello',
stream: false,
},
user: { id: 'user-123' },
config: {
endpoints: {
agents: { allowedProviders: ['anthropic'] },
},
},
on: jest.fn(),
};
res = {
status: jest.fn().mockReturnThis(),
json: jest.fn(),
setHeader: jest.fn(),
flushHeaders: jest.fn(),
end: jest.fn(),
write: jest.fn(),
};
});
describe('token usage recording - non-streaming', () => {
it('should call recordCollectedUsage after successful non-streaming completion', async () => {
await createResponse(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledTimes(1);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
{ spendTokens: mockSpendTokens, spendStructuredTokens: mockSpendStructuredTokens },
expect.objectContaining({
user: 'user-123',
conversationId: expect.any(String),
collectedUsage: expect.any(Array),
context: 'message',
}),
);
});
it('should pass balance and transactions config to recordCollectedUsage', async () => {
mockGetBalanceConfig.mockReturnValue({ enabled: true, startBalance: 2000 });
mockGetTransactionsConfig.mockReturnValue({ enabled: true });
await createResponse(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
expect.any(Object),
expect.objectContaining({
balance: { enabled: true, startBalance: 2000 },
transactions: { enabled: true },
}),
);
});
it('should pass spendTokens and spendStructuredTokens as dependencies', async () => {
await createResponse(req, res);
const [deps] = mockRecordCollectedUsage.mock.calls[0];
expect(deps).toHaveProperty('spendTokens', mockSpendTokens);
expect(deps).toHaveProperty('spendStructuredTokens', mockSpendStructuredTokens);
});
it('should include model from primaryConfig in recordCollectedUsage params', async () => {
await createResponse(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
expect.any(Object),
expect.objectContaining({
model: 'claude-3',
}),
);
});
});
describe('token usage recording - streaming', () => {
beforeEach(() => {
req.body.stream = true;
const api = require('@librechat/api');
api.validateResponseRequest.mockReturnValue({
request: { model: 'agent-123', input: 'Hello', stream: true },
});
});
it('should call recordCollectedUsage after successful streaming completion', async () => {
await createResponse(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledTimes(1);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
{ spendTokens: mockSpendTokens, spendStructuredTokens: mockSpendStructuredTokens },
expect.objectContaining({
user: 'user-123',
context: 'message',
}),
);
});
});
describe('collectedUsage population', () => {
it('should collect usage from on_chat_model_end events', async () => {
const api = require('@librechat/api');
let capturedOnChatModelEnd;
api.createAggregatorEventHandlers.mockImplementation(() => {
return {
on_message_delta: { handle: jest.fn() },
on_reasoning_delta: { handle: jest.fn() },
on_run_step: { handle: jest.fn() },
on_run_step_delta: { handle: jest.fn() },
on_chat_model_end: {
handle: jest.fn((event, data) => {
if (capturedOnChatModelEnd) {
capturedOnChatModelEnd(event, data);
}
}),
},
};
});
api.createRun.mockImplementation(async ({ customHandlers }) => {
capturedOnChatModelEnd = (event, data) => {
customHandlers.on_chat_model_end.handle(event, data);
};
return {
processStream: jest.fn().mockImplementation(async () => {
customHandlers.on_chat_model_end.handle('on_chat_model_end', {
output: {
usage_metadata: {
input_tokens: 150,
output_tokens: 75,
model: 'claude-3',
},
},
});
}),
};
});
await createResponse(req, res);
expect(mockRecordCollectedUsage).toHaveBeenCalledWith(
expect.any(Object),
expect.objectContaining({
collectedUsage: expect.arrayContaining([
expect.objectContaining({
input_tokens: 150,
output_tokens: 75,
}),
]),
}),
);
});
});
});

View file

@ -16,16 +16,20 @@ const {
createSafeUser,
validateRequest,
initializeAgent,
getBalanceConfig,
createErrorResponse,
recordCollectedUsage,
getTransactionsConfig,
createToolExecuteHandler,
buildNonStreamingResponse,
createOpenAIStreamTracker,
createOpenAIContentAggregator,
createToolExecuteHandler,
isChatCompletionValidationFailure,
} = require('@librechat/api');
const { loadAgentTools, loadToolsForExecution } = require('~/server/services/ToolService');
const { createToolEndCallback } = require('~/server/controllers/agents/callbacks');
const { findAccessibleResources } = require('~/server/services/PermissionService');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getConvoFiles } = require('~/models/Conversation');
const { getAgent, getAgents } = require('~/models/Agent');
const db = require('~/models');
@ -497,6 +501,24 @@ const OpenAIChatCompletionController = async (req, res) => {
},
});
// Record token usage against balance
const balanceConfig = getBalanceConfig(appConfig);
const transactionsConfig = getTransactionsConfig(appConfig);
recordCollectedUsage(
{ spendTokens, spendStructuredTokens },
{
user: userId,
conversationId,
collectedUsage,
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
model: primaryConfig.model || agent.model_parameters?.model,
},
).catch((err) => {
logger.error('[OpenAI API] Error recording usage:', err);
});
// Finalize response
const duration = Date.now() - requestStartTime;
if (isStreaming) {

View file

@ -13,6 +13,9 @@ const {
buildToolSet,
createSafeUser,
initializeAgent,
getBalanceConfig,
recordCollectedUsage,
getTransactionsConfig,
createToolExecuteHandler,
// Responses API
writeDone,
@ -39,6 +42,7 @@ const {
const { loadAgentTools, loadToolsForExecution } = require('~/server/services/ToolService');
const { findAccessibleResources } = require('~/server/services/PermissionService');
const { getConvoFiles, saveConvo, getConvo } = require('~/models/Conversation');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getAgent, getAgents } = require('~/models/Agent');
const db = require('~/models');
@ -403,6 +407,9 @@ const createResponse = async (req, res) => {
const { handlers: responsesHandlers, finalizeStream } =
createResponsesEventHandlers(handlerConfig);
// Collect usage for balance tracking
const collectedUsage = [];
// Built-in handler for processing raw model stream chunks
const chatModelStreamHandler = new ChatModelStreamHandler();
@ -445,7 +452,15 @@ const createResponse = async (req, res) => {
on_reasoning_delta: responsesHandlers.on_reasoning_delta,
on_run_step: responsesHandlers.on_run_step,
on_run_step_delta: responsesHandlers.on_run_step_delta,
on_chat_model_end: responsesHandlers.on_chat_model_end,
on_chat_model_end: {
handle: (event, data) => {
responsesHandlers.on_chat_model_end.handle(event, data);
const usage = data?.output?.usage_metadata;
if (usage) {
collectedUsage.push(usage);
}
},
},
on_tool_end: new ToolEndHandler(toolEndCallback, logger),
on_run_step_completed: { handle: () => {} },
on_chain_stream: { handle: () => {} },
@ -499,6 +514,24 @@ const createResponse = async (req, res) => {
},
});
// Record token usage against balance
const balanceConfig = getBalanceConfig(req.config);
const transactionsConfig = getTransactionsConfig(req.config);
recordCollectedUsage(
{ spendTokens, spendStructuredTokens },
{
user: userId,
conversationId,
collectedUsage,
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
model: primaryConfig.model || agent.model_parameters?.model,
},
).catch((err) => {
logger.error('[Responses API] Error recording usage:', err);
});
// Finalize the stream
finalizeStream();
res.end();
@ -539,6 +572,9 @@ const createResponse = async (req, res) => {
const chatModelStreamHandler = new ChatModelStreamHandler();
// Collect usage for balance tracking
const collectedUsage = [];
/** @type {Promise<import('librechat-data-provider').TAttachment | null>[]} */
const artifactPromises = [];
const toolEndCallback = createToolEndCallback({ req, res, artifactPromises, streamId: null });
@ -569,7 +605,15 @@ const createResponse = async (req, res) => {
on_reasoning_delta: aggregatorHandlers.on_reasoning_delta,
on_run_step: aggregatorHandlers.on_run_step,
on_run_step_delta: aggregatorHandlers.on_run_step_delta,
on_chat_model_end: aggregatorHandlers.on_chat_model_end,
on_chat_model_end: {
handle: (event, data) => {
aggregatorHandlers.on_chat_model_end.handle(event, data);
const usage = data?.output?.usage_metadata;
if (usage) {
collectedUsage.push(usage);
}
},
},
on_tool_end: new ToolEndHandler(toolEndCallback, logger),
on_run_step_completed: { handle: () => {} },
on_chain_stream: { handle: () => {} },
@ -621,6 +665,24 @@ const createResponse = async (req, res) => {
},
});
// Record token usage against balance
const balanceConfig = getBalanceConfig(req.config);
const transactionsConfig = getTransactionsConfig(req.config);
recordCollectedUsage(
{ spendTokens, spendStructuredTokens },
{
user: userId,
conversationId,
collectedUsage,
context: 'message',
balance: balanceConfig,
transactions: transactionsConfig,
model: primaryConfig.model || agent.model_parameters?.model,
},
).catch((err) => {
logger.error('[Responses API] Error recording usage:', err);
});
if (artifactPromises.length > 0) {
try {
await Promise.all(artifactPromises);

View file

@ -8,6 +8,7 @@ export * from './legacy';
export * from './memory';
export * from './migration';
export * from './openai';
export * from './usage';
export * from './resources';
export * from './responses';
export * from './run';

View file

@ -0,0 +1,434 @@
import { recordCollectedUsage } from './usage';
import type { RecordUsageDeps, RecordUsageParams } from './usage';
import type { UsageMetadata } from '../stream/interfaces/IJobStore';
describe('recordCollectedUsage', () => {
let mockSpendTokens: jest.Mock;
let mockSpendStructuredTokens: jest.Mock;
let deps: RecordUsageDeps;
const baseParams: Omit<RecordUsageParams, 'collectedUsage'> = {
user: 'user-123',
conversationId: 'convo-123',
model: 'gpt-4',
context: 'message',
balance: { enabled: true },
transactions: { enabled: true },
};
beforeEach(() => {
jest.clearAllMocks();
mockSpendTokens = jest.fn().mockResolvedValue(undefined);
mockSpendStructuredTokens = jest.fn().mockResolvedValue(undefined);
deps = {
spendTokens: mockSpendTokens,
spendStructuredTokens: mockSpendStructuredTokens,
};
});
describe('basic functionality', () => {
it('should return undefined if collectedUsage is empty', async () => {
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage: [],
});
expect(result).toBeUndefined();
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).not.toHaveBeenCalled();
});
it('should return undefined if collectedUsage is null-ish', async () => {
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage: null as unknown as UsageMetadata[],
});
expect(result).toBeUndefined();
expect(mockSpendTokens).not.toHaveBeenCalled();
});
it('should handle single usage entry correctly', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({
user: 'user-123',
conversationId: 'convo-123',
model: 'gpt-4',
context: 'message',
}),
{ promptTokens: 100, completionTokens: 50 },
);
expect(result).toEqual({ input_tokens: 100, output_tokens: 50 });
});
it('should skip null entries in collectedUsage', async () => {
const collectedUsage = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
null,
{ input_tokens: 200, output_tokens: 60, model: 'gpt-4' },
] as UsageMetadata[];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
expect(result).toEqual({ input_tokens: 100, output_tokens: 110 });
});
});
describe('sequential execution (tool calls)', () => {
it('should calculate tokens correctly for sequential tool calls', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 150, output_tokens: 30, model: 'gpt-4' },
{ input_tokens: 180, output_tokens: 20, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
expect(result?.output_tokens).toBe(100); // 50 + 30 + 20
expect(result?.input_tokens).toBe(100); // First entry's input
});
});
describe('parallel execution (multiple agents)', () => {
it('should handle parallel agents with independent input tokens', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 80, output_tokens: 40, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
expect(result?.output_tokens).toBe(90); // 50 + 40
expect(result?.output_tokens).toBeGreaterThan(0);
});
it('should NOT produce negative output_tokens for parallel execution', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 200, output_tokens: 100, model: 'gpt-4' },
{ input_tokens: 50, output_tokens: 30, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(result?.output_tokens).toBeGreaterThan(0);
expect(result?.output_tokens).toBe(130); // 100 + 30
});
it('should calculate correct total output for multiple parallel agents', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{ input_tokens: 120, output_tokens: 60, model: 'gpt-4-turbo' },
{ input_tokens: 80, output_tokens: 40, model: 'claude-3' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(3);
expect(result?.output_tokens).toBe(150); // 50 + 60 + 40
});
});
describe('cache token handling - OpenAI format', () => {
it('should use spendStructuredTokens for cache tokens (input_token_details)', async () => {
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 100,
output_tokens: 50,
model: 'gpt-4',
input_token_details: {
cache_creation: 20,
cache_read: 10,
},
},
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'gpt-4' }),
{
promptTokens: { input: 100, write: 20, read: 10 },
completionTokens: 50,
},
);
expect(result?.input_tokens).toBe(130); // 100 + 20 + 10
});
});
describe('cache token handling - Anthropic format', () => {
it('should use spendStructuredTokens for cache tokens (cache_*_input_tokens)', async () => {
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 100,
output_tokens: 50,
model: 'claude-3',
cache_creation_input_tokens: 25,
cache_read_input_tokens: 15,
},
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
expect(mockSpendTokens).not.toHaveBeenCalled();
expect(mockSpendStructuredTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'claude-3' }),
{
promptTokens: { input: 100, write: 25, read: 15 },
completionTokens: 50,
},
);
expect(result?.input_tokens).toBe(140); // 100 + 25 + 15
});
});
describe('mixed cache and non-cache entries', () => {
it('should handle mixed entries correctly', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
{
input_tokens: 150,
output_tokens: 30,
model: 'gpt-4',
input_token_details: { cache_creation: 10, cache_read: 5 },
},
{ input_tokens: 200, output_tokens: 20, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledTimes(2);
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(1);
expect(result?.output_tokens).toBe(100); // 50 + 30 + 20
});
});
describe('model fallback', () => {
it('should use usage.model when available', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4-turbo' },
];
await recordCollectedUsage(deps, {
...baseParams,
model: 'fallback-model',
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'gpt-4-turbo' }),
expect.any(Object),
);
});
it('should fallback to param model when usage.model is missing', async () => {
const collectedUsage: UsageMetadata[] = [{ input_tokens: 100, output_tokens: 50 }];
await recordCollectedUsage(deps, {
...baseParams,
model: 'param-model',
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({ model: 'param-model' }),
expect.any(Object),
);
});
});
describe('real-world scenarios', () => {
it('should correctly sum output tokens for sequential tool calls with growing context', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 31596, output_tokens: 151, model: 'claude-opus' },
{ input_tokens: 35368, output_tokens: 150, model: 'claude-opus' },
{ input_tokens: 58362, output_tokens: 295, model: 'claude-opus' },
{ input_tokens: 112604, output_tokens: 193, model: 'claude-opus' },
{ input_tokens: 257440, output_tokens: 2217, model: 'claude-opus' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(result?.input_tokens).toBe(31596);
expect(result?.output_tokens).toBe(3006); // 151 + 150 + 295 + 193 + 2217
expect(mockSpendTokens).toHaveBeenCalledTimes(5);
});
it('should handle cache tokens with multiple tool calls', async () => {
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 788,
output_tokens: 163,
model: 'claude-opus',
input_token_details: { cache_read: 0, cache_creation: 30808 },
},
{
input_tokens: 3802,
output_tokens: 149,
model: 'claude-opus',
input_token_details: { cache_read: 30808, cache_creation: 768 },
},
{
input_tokens: 26808,
output_tokens: 225,
model: 'claude-opus',
input_token_details: { cache_read: 31576, cache_creation: 0 },
},
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
// input_tokens = 788 + 30808 + 0 = 31596
expect(result?.input_tokens).toBe(31596);
// output_tokens = 163 + 149 + 225 = 537
expect(result?.output_tokens).toBe(537);
expect(mockSpendStructuredTokens).toHaveBeenCalledTimes(3);
expect(mockSpendTokens).not.toHaveBeenCalled();
});
});
describe('error handling', () => {
it('should catch and log errors from spendTokens without throwing', async () => {
mockSpendTokens.mockRejectedValue(new Error('DB error'));
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(result).toEqual({ input_tokens: 100, output_tokens: 50 });
});
it('should catch and log errors from spendStructuredTokens without throwing', async () => {
mockSpendStructuredTokens.mockRejectedValue(new Error('DB error'));
const collectedUsage: UsageMetadata[] = [
{
input_tokens: 100,
output_tokens: 50,
model: 'gpt-4',
input_token_details: { cache_creation: 20, cache_read: 10 },
},
];
const result = await recordCollectedUsage(deps, {
...baseParams,
collectedUsage,
});
expect(result).toEqual({ input_tokens: 130, output_tokens: 50 });
});
});
describe('transaction metadata', () => {
it('should pass all metadata fields to spend functions', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
const endpointTokenConfig = { 'gpt-4': { prompt: 0.01, completion: 0.03, context: 8192 } };
await recordCollectedUsage(deps, {
...baseParams,
endpointTokenConfig,
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledWith(
{
user: 'user-123',
conversationId: 'convo-123',
model: 'gpt-4',
context: 'message',
balance: { enabled: true },
transactions: { enabled: true },
endpointTokenConfig,
},
{ promptTokens: 100, completionTokens: 50 },
);
});
it('should use default context "message" when not provided', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
await recordCollectedUsage(deps, {
user: 'user-123',
conversationId: 'convo-123',
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({ context: 'message' }),
expect.any(Object),
);
});
it('should allow custom context like "title"', async () => {
const collectedUsage: UsageMetadata[] = [
{ input_tokens: 100, output_tokens: 50, model: 'gpt-4' },
];
await recordCollectedUsage(deps, {
...baseParams,
context: 'title',
collectedUsage,
});
expect(mockSpendTokens).toHaveBeenCalledWith(
expect.objectContaining({ context: 'title' }),
expect.any(Object),
);
});
});
});

View file

@ -0,0 +1,146 @@
import { logger } from '@librechat/data-schemas';
import type { TCustomConfig, TTransactionsConfig } from 'librechat-data-provider';
import type { UsageMetadata } from '../stream/interfaces/IJobStore';
import type { EndpointTokenConfig } from '../types/tokens';
interface TokenUsage {
promptTokens?: number;
completionTokens?: number;
}
interface StructuredPromptTokens {
input?: number;
write?: number;
read?: number;
}
interface StructuredTokenUsage {
promptTokens?: StructuredPromptTokens;
completionTokens?: number;
}
interface TxMetadata {
user: string;
model?: string;
context: string;
conversationId: string;
balance?: Partial<TCustomConfig['balance']> | null;
transactions?: Partial<TTransactionsConfig>;
endpointTokenConfig?: EndpointTokenConfig;
}
type SpendTokensFn = (txData: TxMetadata, tokenUsage: TokenUsage) => Promise<unknown>;
type SpendStructuredTokensFn = (
txData: TxMetadata,
tokenUsage: StructuredTokenUsage,
) => Promise<unknown>;
export interface RecordUsageDeps {
spendTokens: SpendTokensFn;
spendStructuredTokens: SpendStructuredTokensFn;
}
export interface RecordUsageParams {
user: string;
conversationId: string;
collectedUsage: UsageMetadata[];
model?: string;
context?: string;
balance?: Partial<TCustomConfig['balance']> | null;
transactions?: Partial<TTransactionsConfig>;
endpointTokenConfig?: EndpointTokenConfig;
}
export interface RecordUsageResult {
input_tokens: number;
output_tokens: number;
}
/**
* Records token usage for collected LLM calls and spends tokens against balance.
* This handles both sequential execution (tool calls) and parallel execution (multiple agents).
*/
export async function recordCollectedUsage(
deps: RecordUsageDeps,
params: RecordUsageParams,
): Promise<RecordUsageResult | undefined> {
const {
user,
model,
balance,
transactions,
conversationId,
collectedUsage,
endpointTokenConfig,
context = 'message',
} = params;
const { spendTokens, spendStructuredTokens } = deps;
if (!collectedUsage || !collectedUsage.length) {
return;
}
const firstUsage = collectedUsage[0];
const input_tokens =
(firstUsage?.input_tokens || 0) +
(Number(firstUsage?.input_token_details?.cache_creation) ||
Number(firstUsage?.cache_creation_input_tokens) ||
0) +
(Number(firstUsage?.input_token_details?.cache_read) ||
Number(firstUsage?.cache_read_input_tokens) ||
0);
let total_output_tokens = 0;
for (const usage of collectedUsage) {
if (!usage) {
continue;
}
const cache_creation =
Number(usage.input_token_details?.cache_creation) ||
Number(usage.cache_creation_input_tokens) ||
0;
const cache_read =
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
total_output_tokens += Number(usage.output_tokens) || 0;
const txMetadata: TxMetadata = {
context,
balance,
transactions,
conversationId,
user,
endpointTokenConfig,
model: usage.model ?? model,
};
if (cache_creation > 0 || cache_read > 0) {
spendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[packages/api #recordCollectedUsage] Error spending structured tokens', err);
});
continue;
}
spendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error('[packages/api #recordCollectedUsage] Error spending tokens', err);
});
}
return {
input_tokens,
output_tokens: total_output_tokens,
};
}