* 📑 update mkdocs * rename docker override file and add to gitignore * update .env.example - GOOGLE_MODELS * update index.md * doc refactor: split installation and configuration in two sub-folders * doc update: installation guides * doc update: configuration guides * doc: new docker override guide * doc: new beginner's guide for contributions - Thanks @Berry-13 * doc: update documentation_guidelines.md * doc: update testing.md * doc: update deployment guides * doc: update /dev readme * doc: update general_info * doc: add 0 value to doc weight * doc: add index.md to every doc folders * doc: add weight to index.md and move openrouter from free_ai_apis.md to ai_setup.md * doc: update toc so they display properly on the right had side in mkdocs * doc: update pandoranext.md * doc: index logging_system.md * doc: update readme.md * doc: update litellm.md * doc: update ./dev/readme.md * doc:🔖 new presets.md * doc: minor corrections * doc update: user_auth_system.md and presets.md, doc feat: add mermaid support to mkdocs * doc update: add screenshots to presets.md * doc update: add screenshots to - OpenID with AWS Cognito * doc update: BingAI cookie instruction * doc update: discord auth * doc update: facebook auth * doc: corrections to user_auth_system.md * doc update: github auth * doc update: google auth * doc update: auth clean up * doc organization: installation * doc organization: configuration * doc organization: features+plugins & update:plugins screenshots * doc organization: deploymend + general_info & update: tech_stack.md * doc organization: contributions * doc: minor fixes * doc: minor fixes
3.9 KiB
| title | weight |
|---|---|
| 🚅 LiteLLM | -7 |
Using LibreChat with LiteLLM Proxy
Use LiteLLM Proxy for:
- Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
- Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
- Authentication & Spend Tracking Virtual Keys
https://docs.litellm.ai/docs/simple_proxy
Start LiteLLM Proxy Server
Pip install litellm
pip install litellm
Create a config.yaml for litellm proxy
More information on LiteLLM configurations here: https://docs.litellm.ai/docs/simple_proxy#proxy-configs
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key:
rpm: 1440
Start the proxy
litellm --config /path/to/config.yaml
#INFO: Proxy running on http://0.0.0.0:8000
Use LiteLLM Proxy Server with LibreChat
1. Clone the repo
git clone https://github.com/danny-avila/LibreChat.git
2. Modify Librechat's docker-compose.yml
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
3. Save fake OpenAI key in Librechat's .env
Copy Librechat's .env.example to .env and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
OPENAI_API_KEY=sk-1234
4. Run LibreChat:
docker compose up
Why use LiteLLM?
-
Access to Multiple LLMs: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.
-
Load Balancing: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments.
-
Authentication & Spend Tracking: The server supports virtual keys for authentication and tracks spending.
Key components and features include:
- Installation: Easy installation.
- Testing: Testing features to route requests to specific models.
- Server Endpoints: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation.
- Supported LLMs: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more.
- Proxy Configurations: Allows setting various parameters like model list, server settings, environment variables, and more.
- Multiple Models Management: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts.
- Embedding Models Support: Special configurations for embedding models.
- Authentication Management: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend.
- Custom Configurations: Supports setting model-specific parameters, caching responses, and custom prompt templates.
- Debugging Tools: Options for debugging and logging proxy input/output.
- Deployment and Performance: Information on deploying LiteLLM Proxy and its performance metrics.
- Proxy CLI Arguments: A wide range of command-line arguments for customization.
Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.