LibreChat/docs/install/configuration/litellm.md
Fuegovic 51050cc4d3
🧹📚 docs: refactor and clean up (#1392)
* 📑 update mkdocs

* rename docker override file and add to gitignore

* update .env.example - GOOGLE_MODELS

* update index.md

* doc refactor: split installation and configuration in two sub-folders

* doc update: installation guides

* doc update: configuration guides

* doc: new docker override guide

* doc: new beginner's guide for contributions - Thanks @Berry-13

* doc: update documentation_guidelines.md

* doc: update testing.md

* doc: update deployment guides

* doc: update /dev readme

* doc: update general_info

* doc: add 0 value to doc weight

* doc: add index.md to every doc folders

* doc: add weight to index.md and move openrouter from free_ai_apis.md to ai_setup.md

* doc: update toc so they display properly on the right had side in mkdocs

* doc: update pandoranext.md

* doc: index logging_system.md

* doc: update readme.md

* doc: update litellm.md

* doc: update ./dev/readme.md

* doc:🔖 new presets.md

* doc: minor corrections

* doc update: user_auth_system.md and presets.md, doc feat: add mermaid support to mkdocs

* doc update: add screenshots to presets.md

* doc update: add screenshots to - OpenID with AWS Cognito

* doc update: BingAI cookie instruction

* doc update: discord auth

* doc update: facebook auth

* doc: corrections to user_auth_system.md

* doc update: github auth

* doc update: google auth

* doc update: auth clean up

* doc organization: installation

* doc organization: configuration

* doc organization: features+plugins & update:plugins screenshots

* doc organization: deploymend + general_info  & update: tech_stack.md

* doc organization: contributions

* doc: minor fixes

* doc: minor fixes
2023-12-22 08:36:42 -05:00

3.9 KiB

title weight
🚅 LiteLLM -7

Using LibreChat with LiteLLM Proxy

Use LiteLLM Proxy for:

  • Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format
  • Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests
  • Authentication & Spend Tracking Virtual Keys

https://docs.litellm.ai/docs/simple_proxy

Start LiteLLM Proxy Server

Pip install litellm

pip install litellm

Create a config.yaml for litellm proxy

More information on LiteLLM configurations here: https://docs.litellm.ai/docs/simple_proxy#proxy-configs

model_list:
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: azure/gpt-turbo-small-eu
      api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
      api_key: 
      rpm: 6      # Rate limit for this deployment: in requests per minute (rpm)
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: azure/gpt-turbo-small-ca
      api_base: https://my-endpoint-canada-berri992.openai.azure.com/
      api_key: 
      rpm: 6
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: azure/gpt-turbo-large
      api_base: https://openai-france-1234.openai.azure.com/
      api_key: 
      rpm: 1440

Start the proxy

litellm --config /path/to/config.yaml

#INFO: Proxy running on http://0.0.0.0:8000

Use LiteLLM Proxy Server with LibreChat

1. Clone the repo

git clone https://github.com/danny-avila/LibreChat.git

2. Modify Librechat's docker-compose.yml

OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions

3. Save fake OpenAI key in Librechat's .env

Copy Librechat's .env.example to .env and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).

OPENAI_API_KEY=sk-1234

4. Run LibreChat:

docker compose up

Why use LiteLLM?

  1. Access to Multiple LLMs: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.

  2. Load Balancing: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments.

  3. Authentication & Spend Tracking: The server supports virtual keys for authentication and tracks spending.

Key components and features include:

  • Installation: Easy installation.
  • Testing: Testing features to route requests to specific models.
  • Server Endpoints: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation.
  • Supported LLMs: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more.
  • Proxy Configurations: Allows setting various parameters like model list, server settings, environment variables, and more.
  • Multiple Models Management: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts.
  • Embedding Models Support: Special configurations for embedding models.
  • Authentication Management: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend.
  • Custom Configurations: Supports setting model-specific parameters, caching responses, and custom prompt templates.
  • Debugging Tools: Options for debugging and logging proxy input/output.
  • Deployment and Performance: Information on deploying LiteLLM Proxy and its performance metrics.
  • Proxy CLI Arguments: A wide range of command-line arguments for customization.

Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.