2025-10-19 09:23:27 -04:00
|
|
|
const { matchModelName, findMatchingPattern } = require('@librechat/api');
|
2023-10-06 13:21:44 -04:00
|
|
|
const defaultRate = 6;
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
|
2024-12-17 17:18:49 -05:00
|
|
|
/**
|
|
|
|
|
* AWS Bedrock pricing
|
|
|
|
|
* source: https://aws.amazon.com/bedrock/pricing/
|
|
|
|
|
* */
|
2024-08-08 23:31:07 -04:00
|
|
|
const bedrockValues = {
|
2025-10-19 09:23:27 -04:00
|
|
|
// Basic llama2 patterns (base defaults to smallest variant)
|
|
|
|
|
llama2: { prompt: 0.75, completion: 1.0 },
|
|
|
|
|
'llama-2': { prompt: 0.75, completion: 1.0 },
|
🪨 feat: AWS Bedrock support (#3935)
* feat: Add BedrockIcon component to SVG library
* feat: EModelEndpoint.bedrock
* feat: first pass, bedrock chat. note: AgentClient is returning `agents` as conversation.endpoint
* fix: declare endpoint in initialization step
* chore: Update @librechat/agents dependency to version 1.4.5
* feat: backend content aggregation for agents/bedrock
* feat: abort agent requests
* feat: AWS Bedrock icons
* WIP: agent provider schema parsing
* chore: Update EditIcon props type
* refactor(useGenerationsByLatest): make agents and bedrock editable
* refactor: non-assistant message content, parts
* fix: Bedrock response `sender`
* fix: use endpointOption.model_parameters not endpointOption.modelOptions
* fix: types for step handler
* refactor: Update Agents.ToolCallDelta type
* refactor: Remove unnecessary assignment of parentMessageId in AskController
* refactor: remove unnecessary assignment of parentMessageId (agent request handler)
* fix(bedrock/agents): message regeneration
* refactor: dynamic form elements using react-hook-form Controllers
* fix: agent icons/labels for messages
* fix: agent actions
* fix: use of new dynamic tags causing application crash
* refactor: dynamic settings touch-ups
* refactor: update Slider component to allow custom track class name
* refactor: update DynamicSlider component styles
* refactor: use Constants value for GLOBAL_PROJECT_NAME (enum)
* feat: agent share global methods/controllers
* fix: agents query
* fix: `getResponseModel`
* fix: share prompt a11y issue
* refactor: update SharePrompt dialog theme styles
* refactor: explicit typing for SharePrompt
* feat: add agent roles/permissions
* chore: update @librechat/agents dependency to version 1.4.7 for tool_call_ids edge case
* fix(Anthropic): messages.X.content.Y.tool_use.input: Input should be a valid dictionary
* fix: handle text parts with tool_call_ids and empty text
* fix: role initialization
* refactor: don't make instructions required
* refactor: improve typing of Text part
* fix: setShowStopButton for agents route
* chore: remove params for now
* fix: add streamBuffer and streamRate to help prevent 'Overloaded' errors from Anthropic API
* refactor: remove console.log statement in ContentRender component
* chore: typing, rename Context to Delete Button
* chore(DeleteButton): logging
* refactor(Action): make accessible
* style(Action): improve a11y again
* refactor: remove use/mention of mongoose sessions
* feat: first pass, sharing agents
* feat: visual indicator for global agent, remove author when serving to non-author
* wip: params
* chore: fix typing issues
* fix(schemas): typing
* refactor: improve accessibility of ListCard component and fix console React warning
* wip: reset templates for non-legacy new convos
* Revert "wip: params"
This reverts commit f8067e91d4adf7be9e0d9e914aaae79ac4689b80.
* Revert "refactor: dynamic form elements using react-hook-form Controllers"
This reverts commit 2150c4815d8c74a978a4b697aa8f54dc11e035d7.
* fix(Parameters): types and parameter effect update to only update local state to parameters
* refactor: optimize useDebouncedInput hook for better performance
* feat: first pass, anthropic bedrock params
* chore: paramEndpoints check for endpointType too
* fix: maxTokens to use coerceNumber.optional(),
* feat: extra chat model params
* chore: reduce code repetition
* refactor: improve preset title handling in SaveAsPresetDialog component
* refactor: improve preset handling in HeaderOptions component
* chore: improve typing, replace legacy dialog for SaveAsPresetDialog
* feat: save as preset from parameters panel
* fix: multi-search in select dropdown when using Option type
* refactor: update default showDefault value to false in Dynamic components
* feat: Bedrock presets settings
* chore: config, fix agents schema, update config version
* refactor: update AWS region variable name in bedrock options endpoint to BEDROCK_AWS_DEFAULT_REGION
* refactor: update baseEndpointSchema in config.ts to include baseURL property
* refactor: update createRun function to include req parameter and set streamRate based on provider
* feat: availableRegions via config
* refactor: remove unused demo agent controller file
* WIP: title
* Update @librechat/agents to version 1.5.0
* chore: addTitle.js to handle empty responseText
* feat: support images and titles
* feat: context token updates
* Refactor BaseClient test to use expect.objectContaining
* refactor: add model select, remove header options params, move side panel params below prompts
* chore: update models list, catch title error
* feat: model service for bedrock models (env)
* chore: Remove verbose debug log in AgentClient class following stream
* feat(bedrock): track token spend; fix: token rates, value key mapping for AWS models
* refactor: handle streamRate in `handleLLMNewToken` callback
* chore: AWS Bedrock example config in `.env.example`
* refactor: Rename bedrockMeta to bedrockGeneral in settings.ts and use for AI21 and Amazon Bedrock providers
* refactor: Update `.env.example` with AWS Bedrock model IDs URL and additional notes
* feat: titleModel support for bedrock
* refactor: Update `.env.example` with additional notes for AWS Bedrock model IDs
2024-09-09 12:06:59 -04:00
|
|
|
'llama2-13b': { prompt: 0.75, completion: 1.0 },
|
2024-11-01 18:36:39 -04:00
|
|
|
'llama2:70b': { prompt: 1.95, completion: 2.56 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama2-70b': { prompt: 1.95, completion: 2.56 },
|
|
|
|
|
|
2025-10-19 09:23:27 -04:00
|
|
|
// Basic llama3 patterns (base defaults to smallest variant)
|
|
|
|
|
llama3: { prompt: 0.3, completion: 0.6 },
|
|
|
|
|
'llama-3': { prompt: 0.3, completion: 0.6 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3-8b': { prompt: 0.3, completion: 0.6 },
|
2024-11-01 18:36:39 -04:00
|
|
|
'llama3:8b': { prompt: 0.3, completion: 0.6 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3-70b': { prompt: 2.65, completion: 3.5 },
|
2024-11-01 18:36:39 -04:00
|
|
|
'llama3:70b': { prompt: 2.65, completion: 3.5 },
|
2024-12-17 17:18:49 -05:00
|
|
|
|
2025-10-19 09:23:27 -04:00
|
|
|
// llama3-x-Nb pattern (base defaults to smallest variant)
|
|
|
|
|
'llama3-1': { prompt: 0.22, completion: 0.22 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3-1-8b': { prompt: 0.22, completion: 0.22 },
|
|
|
|
|
'llama3-1-70b': { prompt: 0.72, completion: 0.72 },
|
|
|
|
|
'llama3-1-405b': { prompt: 2.4, completion: 2.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama3-2': { prompt: 0.1, completion: 0.1 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3-2-1b': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'llama3-2-3b': { prompt: 0.15, completion: 0.15 },
|
|
|
|
|
'llama3-2-11b': { prompt: 0.16, completion: 0.16 },
|
|
|
|
|
'llama3-2-90b': { prompt: 0.72, completion: 0.72 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama3-3': { prompt: 2.65, completion: 3.5 },
|
|
|
|
|
'llama3-3-70b': { prompt: 2.65, completion: 3.5 },
|
2024-12-17 17:18:49 -05:00
|
|
|
|
2025-10-19 09:23:27 -04:00
|
|
|
// llama3.x:Nb pattern (base defaults to smallest variant)
|
|
|
|
|
'llama3.1': { prompt: 0.22, completion: 0.22 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3.1:8b': { prompt: 0.22, completion: 0.22 },
|
|
|
|
|
'llama3.1:70b': { prompt: 0.72, completion: 0.72 },
|
|
|
|
|
'llama3.1:405b': { prompt: 2.4, completion: 2.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama3.2': { prompt: 0.1, completion: 0.1 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama3.2:1b': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'llama3.2:3b': { prompt: 0.15, completion: 0.15 },
|
|
|
|
|
'llama3.2:11b': { prompt: 0.16, completion: 0.16 },
|
|
|
|
|
'llama3.2:90b': { prompt: 0.72, completion: 0.72 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama3.3': { prompt: 2.65, completion: 3.5 },
|
|
|
|
|
'llama3.3:70b': { prompt: 2.65, completion: 3.5 },
|
2024-12-17 17:18:49 -05:00
|
|
|
|
2025-10-19 09:23:27 -04:00
|
|
|
// llama-3.x-Nb pattern (base defaults to smallest variant)
|
|
|
|
|
'llama-3.1': { prompt: 0.22, completion: 0.22 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama-3.1-8b': { prompt: 0.22, completion: 0.22 },
|
|
|
|
|
'llama-3.1-70b': { prompt: 0.72, completion: 0.72 },
|
|
|
|
|
'llama-3.1-405b': { prompt: 2.4, completion: 2.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama-3.2': { prompt: 0.1, completion: 0.1 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama-3.2-1b': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'llama-3.2-3b': { prompt: 0.15, completion: 0.15 },
|
|
|
|
|
'llama-3.2-11b': { prompt: 0.16, completion: 0.16 },
|
|
|
|
|
'llama-3.2-90b': { prompt: 0.72, completion: 0.72 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'llama-3.3': { prompt: 2.65, completion: 3.5 },
|
2024-12-17 17:18:49 -05:00
|
|
|
'llama-3.3-70b': { prompt: 2.65, completion: 3.5 },
|
🪨 feat: AWS Bedrock support (#3935)
* feat: Add BedrockIcon component to SVG library
* feat: EModelEndpoint.bedrock
* feat: first pass, bedrock chat. note: AgentClient is returning `agents` as conversation.endpoint
* fix: declare endpoint in initialization step
* chore: Update @librechat/agents dependency to version 1.4.5
* feat: backend content aggregation for agents/bedrock
* feat: abort agent requests
* feat: AWS Bedrock icons
* WIP: agent provider schema parsing
* chore: Update EditIcon props type
* refactor(useGenerationsByLatest): make agents and bedrock editable
* refactor: non-assistant message content, parts
* fix: Bedrock response `sender`
* fix: use endpointOption.model_parameters not endpointOption.modelOptions
* fix: types for step handler
* refactor: Update Agents.ToolCallDelta type
* refactor: Remove unnecessary assignment of parentMessageId in AskController
* refactor: remove unnecessary assignment of parentMessageId (agent request handler)
* fix(bedrock/agents): message regeneration
* refactor: dynamic form elements using react-hook-form Controllers
* fix: agent icons/labels for messages
* fix: agent actions
* fix: use of new dynamic tags causing application crash
* refactor: dynamic settings touch-ups
* refactor: update Slider component to allow custom track class name
* refactor: update DynamicSlider component styles
* refactor: use Constants value for GLOBAL_PROJECT_NAME (enum)
* feat: agent share global methods/controllers
* fix: agents query
* fix: `getResponseModel`
* fix: share prompt a11y issue
* refactor: update SharePrompt dialog theme styles
* refactor: explicit typing for SharePrompt
* feat: add agent roles/permissions
* chore: update @librechat/agents dependency to version 1.4.7 for tool_call_ids edge case
* fix(Anthropic): messages.X.content.Y.tool_use.input: Input should be a valid dictionary
* fix: handle text parts with tool_call_ids and empty text
* fix: role initialization
* refactor: don't make instructions required
* refactor: improve typing of Text part
* fix: setShowStopButton for agents route
* chore: remove params for now
* fix: add streamBuffer and streamRate to help prevent 'Overloaded' errors from Anthropic API
* refactor: remove console.log statement in ContentRender component
* chore: typing, rename Context to Delete Button
* chore(DeleteButton): logging
* refactor(Action): make accessible
* style(Action): improve a11y again
* refactor: remove use/mention of mongoose sessions
* feat: first pass, sharing agents
* feat: visual indicator for global agent, remove author when serving to non-author
* wip: params
* chore: fix typing issues
* fix(schemas): typing
* refactor: improve accessibility of ListCard component and fix console React warning
* wip: reset templates for non-legacy new convos
* Revert "wip: params"
This reverts commit f8067e91d4adf7be9e0d9e914aaae79ac4689b80.
* Revert "refactor: dynamic form elements using react-hook-form Controllers"
This reverts commit 2150c4815d8c74a978a4b697aa8f54dc11e035d7.
* fix(Parameters): types and parameter effect update to only update local state to parameters
* refactor: optimize useDebouncedInput hook for better performance
* feat: first pass, anthropic bedrock params
* chore: paramEndpoints check for endpointType too
* fix: maxTokens to use coerceNumber.optional(),
* feat: extra chat model params
* chore: reduce code repetition
* refactor: improve preset title handling in SaveAsPresetDialog component
* refactor: improve preset handling in HeaderOptions component
* chore: improve typing, replace legacy dialog for SaveAsPresetDialog
* feat: save as preset from parameters panel
* fix: multi-search in select dropdown when using Option type
* refactor: update default showDefault value to false in Dynamic components
* feat: Bedrock presets settings
* chore: config, fix agents schema, update config version
* refactor: update AWS region variable name in bedrock options endpoint to BEDROCK_AWS_DEFAULT_REGION
* refactor: update baseEndpointSchema in config.ts to include baseURL property
* refactor: update createRun function to include req parameter and set streamRate based on provider
* feat: availableRegions via config
* refactor: remove unused demo agent controller file
* WIP: title
* Update @librechat/agents to version 1.5.0
* chore: addTitle.js to handle empty responseText
* feat: support images and titles
* feat: context token updates
* Refactor BaseClient test to use expect.objectContaining
* refactor: add model select, remove header options params, move side panel params below prompts
* chore: update models list, catch title error
* feat: model service for bedrock models (env)
* chore: Remove verbose debug log in AgentClient class following stream
* feat(bedrock): track token spend; fix: token rates, value key mapping for AWS models
* refactor: handle streamRate in `handleLLMNewToken` callback
* chore: AWS Bedrock example config in `.env.example`
* refactor: Rename bedrockMeta to bedrockGeneral in settings.ts and use for AI21 and Amazon Bedrock providers
* refactor: Update `.env.example` with AWS Bedrock model IDs URL and additional notes
* feat: titleModel support for bedrock
* refactor: Update `.env.example` with additional notes for AWS Bedrock model IDs
2024-09-09 12:06:59 -04:00
|
|
|
'mistral-7b': { prompt: 0.15, completion: 0.2 },
|
|
|
|
|
'mistral-small': { prompt: 0.15, completion: 0.2 },
|
|
|
|
|
'mixtral-8x7b': { prompt: 0.45, completion: 0.7 },
|
|
|
|
|
'mistral-large-2402': { prompt: 4.0, completion: 12.0 },
|
|
|
|
|
'mistral-large-2407': { prompt: 3.0, completion: 9.0 },
|
|
|
|
|
'command-text': { prompt: 1.5, completion: 2.0 },
|
|
|
|
|
'command-light': { prompt: 0.3, completion: 0.6 },
|
2025-10-19 09:23:27 -04:00
|
|
|
// AI21 models
|
|
|
|
|
'j2-mid': { prompt: 12.5, completion: 12.5 },
|
|
|
|
|
'j2-ultra': { prompt: 18.8, completion: 18.8 },
|
|
|
|
|
'jamba-instruct': { prompt: 0.5, completion: 0.7 },
|
|
|
|
|
// Amazon Titan models
|
|
|
|
|
'titan-text-lite': { prompt: 0.15, completion: 0.2 },
|
|
|
|
|
'titan-text-express': { prompt: 0.2, completion: 0.6 },
|
|
|
|
|
'titan-text-premier': { prompt: 0.5, completion: 1.5 },
|
|
|
|
|
// Amazon Nova models
|
|
|
|
|
'nova-micro': { prompt: 0.035, completion: 0.14 },
|
|
|
|
|
'nova-lite': { prompt: 0.06, completion: 0.24 },
|
|
|
|
|
'nova-pro': { prompt: 0.8, completion: 3.2 },
|
|
|
|
|
'nova-premier': { prompt: 2.5, completion: 12.5 },
|
2025-03-17 16:43:44 -04:00
|
|
|
'deepseek.r1': { prompt: 1.35, completion: 5.4 },
|
2024-08-08 23:31:07 -04:00
|
|
|
};
|
|
|
|
|
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
/**
|
|
|
|
|
* Mapping of model token sizes to their respective multipliers for prompt and completion.
|
2024-04-05 15:19:41 -04:00
|
|
|
* The rates are 1 USD per 1M tokens.
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
* @type {Object.<string, {prompt: number, completion: number}>}
|
|
|
|
|
*/
|
2024-08-08 23:31:07 -04:00
|
|
|
const tokenValues = Object.assign(
|
|
|
|
|
{
|
2025-10-19 09:23:27 -04:00
|
|
|
// Legacy token size mappings (generic patterns - check LAST)
|
2024-08-08 23:31:07 -04:00
|
|
|
'8k': { prompt: 30, completion: 60 },
|
|
|
|
|
'32k': { prompt: 60, completion: 120 },
|
|
|
|
|
'4k': { prompt: 1.5, completion: 2 },
|
|
|
|
|
'16k': { prompt: 3, completion: 4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
// Generic fallback patterns (check LAST)
|
|
|
|
|
'claude-': { prompt: 0.8, completion: 2.4 },
|
|
|
|
|
deepseek: { prompt: 0.28, completion: 0.42 },
|
|
|
|
|
command: { prompt: 0.38, completion: 0.38 },
|
|
|
|
|
gemma: { prompt: 0.02, completion: 0.04 }, // Base pattern (using gemma-3n-e4b pricing)
|
|
|
|
|
gemini: { prompt: 0.5, completion: 1.5 },
|
|
|
|
|
'gpt-oss': { prompt: 0.05, completion: 0.2 },
|
|
|
|
|
// Specific model variants (check FIRST - more specific patterns at end)
|
2024-08-08 23:31:07 -04:00
|
|
|
'gpt-3.5-turbo-1106': { prompt: 1, completion: 2 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'gpt-3.5-turbo-0125': { prompt: 0.5, completion: 1.5 },
|
|
|
|
|
'gpt-4-1106': { prompt: 10, completion: 30 },
|
|
|
|
|
'gpt-4.1': { prompt: 2, completion: 8 },
|
2025-04-14 14:55:59 -04:00
|
|
|
'gpt-4.1-nano': { prompt: 0.1, completion: 0.4 },
|
|
|
|
|
'gpt-4.1-mini': { prompt: 0.4, completion: 1.6 },
|
2025-02-28 12:19:21 -05:00
|
|
|
'gpt-4.5': { prompt: 75, completion: 150 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'gpt-4o': { prompt: 2.5, completion: 10 },
|
|
|
|
|
'gpt-4o-2024-05-13': { prompt: 5, completion: 15 },
|
2024-08-08 23:31:07 -04:00
|
|
|
'gpt-4o-mini': { prompt: 0.15, completion: 0.6 },
|
2025-08-07 16:01:29 -04:00
|
|
|
'gpt-5': { prompt: 1.25, completion: 10 },
|
|
|
|
|
'gpt-5-nano': { prompt: 0.05, completion: 0.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'gpt-5-mini': { prompt: 0.25, completion: 2 },
|
|
|
|
|
'gpt-5-pro': { prompt: 15, completion: 120 },
|
|
|
|
|
o1: { prompt: 15, completion: 60 },
|
|
|
|
|
'o1-mini': { prompt: 1.1, completion: 4.4 },
|
|
|
|
|
'o1-preview': { prompt: 15, completion: 60 },
|
|
|
|
|
o3: { prompt: 2, completion: 8 },
|
|
|
|
|
'o3-mini': { prompt: 1.1, completion: 4.4 },
|
|
|
|
|
'o4-mini': { prompt: 1.1, completion: 4.4 },
|
|
|
|
|
'claude-instant': { prompt: 0.8, completion: 2.4 },
|
|
|
|
|
'claude-2': { prompt: 8, completion: 24 },
|
|
|
|
|
'claude-2.1': { prompt: 8, completion: 24 },
|
|
|
|
|
'claude-3-haiku': { prompt: 0.25, completion: 1.25 },
|
2024-08-08 23:31:07 -04:00
|
|
|
'claude-3-sonnet': { prompt: 3, completion: 15 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'claude-3-opus': { prompt: 15, completion: 75 },
|
|
|
|
|
'claude-3-5-haiku': { prompt: 0.8, completion: 4 },
|
|
|
|
|
'claude-3.5-haiku': { prompt: 0.8, completion: 4 },
|
2024-08-08 23:31:07 -04:00
|
|
|
'claude-3-5-sonnet': { prompt: 3, completion: 15 },
|
2024-08-27 09:07:04 -04:00
|
|
|
'claude-3.5-sonnet': { prompt: 3, completion: 15 },
|
2025-02-24 20:08:55 -05:00
|
|
|
'claude-3-7-sonnet': { prompt: 3, completion: 15 },
|
|
|
|
|
'claude-3.7-sonnet': { prompt: 3, completion: 15 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'claude-haiku-4-5': { prompt: 1, completion: 5 },
|
2025-05-22 15:00:44 -04:00
|
|
|
'claude-opus-4': { prompt: 15, completion: 75 },
|
2025-11-24 16:30:56 -05:00
|
|
|
'claude-opus-4-5': { prompt: 5, completion: 25 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'claude-sonnet-4': { prompt: 3, completion: 15 },
|
2024-08-08 23:31:07 -04:00
|
|
|
'command-r': { prompt: 0.5, completion: 1.5 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'command-r-plus': { prompt: 3, completion: 15 },
|
|
|
|
|
'command-text': { prompt: 1.5, completion: 2.0 },
|
2025-12-01 14:27:08 -05:00
|
|
|
'deepseek-chat': { prompt: 0.28, completion: 0.42 },
|
2025-09-29 21:09:26 -04:00
|
|
|
'deepseek-reasoner': { prompt: 0.28, completion: 0.42 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'deepseek-r1': { prompt: 0.4, completion: 2.0 },
|
|
|
|
|
'deepseek-v3': { prompt: 0.2, completion: 0.8 },
|
|
|
|
|
'gemma-2': { prompt: 0.01, completion: 0.03 }, // Base pattern (using gemma-2-9b pricing)
|
|
|
|
|
'gemma-3': { prompt: 0.02, completion: 0.04 }, // Base pattern (using gemma-3n-e4b pricing)
|
|
|
|
|
'gemma-3-27b': { prompt: 0.09, completion: 0.16 },
|
|
|
|
|
'gemini-1.5': { prompt: 2.5, completion: 10 },
|
|
|
|
|
'gemini-1.5-flash': { prompt: 0.15, completion: 0.6 },
|
|
|
|
|
'gemini-1.5-flash-8b': { prompt: 0.075, completion: 0.3 },
|
|
|
|
|
'gemini-2.0': { prompt: 0.1, completion: 0.4 }, // Base pattern (using 2.0-flash pricing)
|
2025-04-04 23:55:07 +08:00
|
|
|
'gemini-2.0-flash': { prompt: 0.1, completion: 0.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'gemini-2.0-flash-lite': { prompt: 0.075, completion: 0.3 },
|
|
|
|
|
'gemini-2.5': { prompt: 0.3, completion: 2.5 }, // Base pattern (using 2.5-flash pricing)
|
2025-09-30 09:23:28 +08:00
|
|
|
'gemini-2.5-flash': { prompt: 0.3, completion: 2.5 },
|
2025-10-11 17:23:28 +05:30
|
|
|
'gemini-2.5-flash-lite': { prompt: 0.1, completion: 0.4 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'gemini-2.5-pro': { prompt: 1.25, completion: 10 },
|
2025-11-19 15:05:37 -05:00
|
|
|
'gemini-3': { prompt: 2, completion: 12 },
|
2025-02-06 18:13:18 -05:00
|
|
|
'gemini-pro-vision': { prompt: 0.5, completion: 1.5 },
|
2025-10-19 09:23:27 -04:00
|
|
|
grok: { prompt: 2.0, completion: 10.0 }, // Base pattern defaults to grok-2
|
|
|
|
|
'grok-beta': { prompt: 5.0, completion: 15.0 },
|
2025-02-24 20:08:55 -05:00
|
|
|
'grok-vision-beta': { prompt: 5.0, completion: 15.0 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'grok-2': { prompt: 2.0, completion: 10.0 },
|
2025-02-24 20:08:55 -05:00
|
|
|
'grok-2-1212': { prompt: 2.0, completion: 10.0 },
|
|
|
|
|
'grok-2-latest': { prompt: 2.0, completion: 10.0 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'grok-2-vision': { prompt: 2.0, completion: 10.0 },
|
|
|
|
|
'grok-2-vision-1212': { prompt: 2.0, completion: 10.0 },
|
|
|
|
|
'grok-2-vision-latest': { prompt: 2.0, completion: 10.0 },
|
2025-04-12 18:46:36 -04:00
|
|
|
'grok-3': { prompt: 3.0, completion: 15.0 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'grok-3-fast': { prompt: 5.0, completion: 25.0 },
|
|
|
|
|
'grok-3-mini': { prompt: 0.3, completion: 0.5 },
|
|
|
|
|
'grok-3-mini-fast': { prompt: 0.6, completion: 4 },
|
2025-07-11 03:24:13 -04:00
|
|
|
'grok-4': { prompt: 3.0, completion: 15.0 },
|
2025-11-30 17:10:26 -05:00
|
|
|
'grok-4-fast': { prompt: 0.2, completion: 0.5 },
|
|
|
|
|
'grok-4-1-fast': { prompt: 0.2, completion: 0.5 }, // covers reasoning & non-reasoning variants
|
|
|
|
|
'grok-code-fast': { prompt: 0.2, completion: 1.5 },
|
2025-03-27 01:57:25 -04:00
|
|
|
codestral: { prompt: 0.3, completion: 0.9 },
|
|
|
|
|
'ministral-3b': { prompt: 0.04, completion: 0.04 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'ministral-8b': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'mistral-nemo': { prompt: 0.15, completion: 0.15 },
|
|
|
|
|
'mistral-saba': { prompt: 0.2, completion: 0.6 },
|
|
|
|
|
'pixtral-large': { prompt: 2.0, completion: 6.0 },
|
|
|
|
|
'mistral-large': { prompt: 2.0, completion: 6.0 },
|
|
|
|
|
'mixtral-8x22b': { prompt: 0.65, completion: 0.65 },
|
|
|
|
|
kimi: { prompt: 0.14, completion: 2.49 }, // Base pattern (using kimi-k2 pricing)
|
|
|
|
|
// GPT-OSS models (specific sizes)
|
2025-10-05 07:02:09 -04:00
|
|
|
'gpt-oss:20b': { prompt: 0.05, completion: 0.2 },
|
2025-08-07 15:03:19 -04:00
|
|
|
'gpt-oss-20b': { prompt: 0.05, completion: 0.2 },
|
2025-10-05 07:02:09 -04:00
|
|
|
'gpt-oss:120b': { prompt: 0.15, completion: 0.6 },
|
2025-08-07 15:03:19 -04:00
|
|
|
'gpt-oss-120b': { prompt: 0.15, completion: 0.6 },
|
2025-10-19 09:23:27 -04:00
|
|
|
// GLM models (Zhipu AI) - general to specific
|
2025-10-05 09:08:29 -04:00
|
|
|
glm4: { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'glm-4': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'glm-4-32b': { prompt: 0.1, completion: 0.1 },
|
|
|
|
|
'glm-4.5': { prompt: 0.35, completion: 1.55 },
|
|
|
|
|
'glm-4.5-air': { prompt: 0.14, completion: 0.86 },
|
2025-10-19 09:23:27 -04:00
|
|
|
'glm-4.5v': { prompt: 0.6, completion: 1.8 },
|
2025-10-05 09:08:29 -04:00
|
|
|
'glm-4.6': { prompt: 0.5, completion: 1.75 },
|
2025-10-19 09:23:27 -04:00
|
|
|
// Qwen models
|
|
|
|
|
qwen: { prompt: 0.08, completion: 0.33 }, // Qwen base pattern (using qwen2.5-72b pricing)
|
|
|
|
|
'qwen2.5': { prompt: 0.08, completion: 0.33 }, // Qwen 2.5 base pattern
|
|
|
|
|
'qwen-turbo': { prompt: 0.05, completion: 0.2 },
|
|
|
|
|
'qwen-plus': { prompt: 0.4, completion: 1.2 },
|
|
|
|
|
'qwen-max': { prompt: 1.6, completion: 6.4 },
|
|
|
|
|
'qwq-32b': { prompt: 0.15, completion: 0.4 },
|
|
|
|
|
// Qwen3 models
|
|
|
|
|
qwen3: { prompt: 0.035, completion: 0.138 }, // Qwen3 base pattern (using qwen3-4b pricing)
|
|
|
|
|
'qwen3-8b': { prompt: 0.035, completion: 0.138 },
|
|
|
|
|
'qwen3-14b': { prompt: 0.05, completion: 0.22 },
|
|
|
|
|
'qwen3-30b-a3b': { prompt: 0.06, completion: 0.22 },
|
|
|
|
|
'qwen3-32b': { prompt: 0.05, completion: 0.2 },
|
|
|
|
|
'qwen3-235b-a22b': { prompt: 0.08, completion: 0.55 },
|
|
|
|
|
// Qwen3 VL (Vision-Language) models
|
|
|
|
|
'qwen3-vl-8b-thinking': { prompt: 0.18, completion: 2.1 },
|
|
|
|
|
'qwen3-vl-8b-instruct': { prompt: 0.18, completion: 0.69 },
|
|
|
|
|
'qwen3-vl-30b-a3b': { prompt: 0.29, completion: 1.0 },
|
|
|
|
|
'qwen3-vl-235b-a22b': { prompt: 0.3, completion: 1.2 },
|
|
|
|
|
// Qwen3 specialized models
|
|
|
|
|
'qwen3-max': { prompt: 1.2, completion: 6 },
|
|
|
|
|
'qwen3-coder': { prompt: 0.22, completion: 0.95 },
|
|
|
|
|
'qwen3-coder-30b-a3b': { prompt: 0.06, completion: 0.25 },
|
|
|
|
|
'qwen3-coder-plus': { prompt: 1, completion: 5 },
|
|
|
|
|
'qwen3-coder-flash': { prompt: 0.3, completion: 1.5 },
|
|
|
|
|
'qwen3-next-80b-a3b': { prompt: 0.1, completion: 0.8 },
|
2024-08-08 23:31:07 -04:00
|
|
|
},
|
|
|
|
|
bedrockValues,
|
|
|
|
|
);
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
|
2024-08-17 03:24:09 -04:00
|
|
|
/**
|
|
|
|
|
* Mapping of model token sizes to their respective multipliers for cached input, read and write.
|
|
|
|
|
* See Anthropic's documentation on this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#pricing
|
|
|
|
|
* The rates are 1 USD per 1M tokens.
|
|
|
|
|
* @type {Object.<string, {write: number, read: number }>}
|
|
|
|
|
*/
|
|
|
|
|
const cacheTokenValues = {
|
2025-02-24 20:08:55 -05:00
|
|
|
'claude-3.7-sonnet': { write: 3.75, read: 0.3 },
|
|
|
|
|
'claude-3-7-sonnet': { write: 3.75, read: 0.3 },
|
2024-08-27 09:07:04 -04:00
|
|
|
'claude-3.5-sonnet': { write: 3.75, read: 0.3 },
|
2024-08-17 03:24:09 -04:00
|
|
|
'claude-3-5-sonnet': { write: 3.75, read: 0.3 },
|
2024-12-03 22:25:15 -05:00
|
|
|
'claude-3.5-haiku': { write: 1, read: 0.08 },
|
|
|
|
|
'claude-3-5-haiku': { write: 1, read: 0.08 },
|
2024-08-17 03:24:09 -04:00
|
|
|
'claude-3-haiku': { write: 0.3, read: 0.03 },
|
2025-11-24 16:30:56 -05:00
|
|
|
'claude-haiku-4-5': { write: 1.25, read: 0.1 },
|
2025-05-22 15:00:44 -04:00
|
|
|
'claude-sonnet-4': { write: 3.75, read: 0.3 },
|
|
|
|
|
'claude-opus-4': { write: 18.75, read: 1.5 },
|
2025-11-24 16:30:56 -05:00
|
|
|
'claude-opus-4-5': { write: 6.25, read: 0.5 },
|
2025-12-01 14:27:08 -05:00
|
|
|
// DeepSeek models - cache hit: $0.028/1M, cache miss: $0.28/1M
|
|
|
|
|
deepseek: { write: 0.28, read: 0.028 },
|
|
|
|
|
'deepseek-chat': { write: 0.28, read: 0.028 },
|
|
|
|
|
'deepseek-reasoner': { write: 0.28, read: 0.028 },
|
2024-08-17 03:24:09 -04:00
|
|
|
};
|
|
|
|
|
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
/**
|
|
|
|
|
* Retrieves the key associated with a given model name.
|
|
|
|
|
*
|
|
|
|
|
* @param {string} model - The model name to match.
|
2023-12-10 14:54:13 -05:00
|
|
|
* @param {string} endpoint - The endpoint name to match.
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
* @returns {string|undefined} The key corresponding to the model name, or undefined if no match is found.
|
|
|
|
|
*/
|
2023-12-10 14:54:13 -05:00
|
|
|
const getValueKey = (model, endpoint) => {
|
2025-10-19 09:23:27 -04:00
|
|
|
if (!model || typeof model !== 'string') {
|
|
|
|
|
return undefined;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Use findMatchingPattern directly against tokenValues for efficient lookup
|
|
|
|
|
if (!endpoint || (typeof endpoint === 'string' && !tokenValues[endpoint])) {
|
|
|
|
|
const matchedKey = findMatchingPattern(model, tokenValues);
|
|
|
|
|
if (matchedKey) {
|
|
|
|
|
return matchedKey;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Fallback: use matchModelName for edge cases and legacy handling
|
2023-12-10 14:54:13 -05:00
|
|
|
const modelName = matchModelName(model, endpoint);
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
if (!modelName) {
|
|
|
|
|
return undefined;
|
|
|
|
|
}
|
|
|
|
|
|
2025-10-19 09:23:27 -04:00
|
|
|
// Legacy token size mappings and aliases for older models
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
if (modelName.includes('gpt-3.5-turbo-16k')) {
|
|
|
|
|
return '16k';
|
|
|
|
|
} else if (modelName.includes('gpt-3.5')) {
|
|
|
|
|
return '4k';
|
2024-04-23 08:57:20 -04:00
|
|
|
} else if (modelName.includes('gpt-4-vision')) {
|
2025-10-19 09:23:27 -04:00
|
|
|
return 'gpt-4-1106'; // Alias for gpt-4-vision
|
2024-01-25 22:57:18 -05:00
|
|
|
} else if (modelName.includes('gpt-4-0125')) {
|
2025-10-19 09:23:27 -04:00
|
|
|
return 'gpt-4-1106'; // Alias for gpt-4-0125
|
2024-01-25 22:57:18 -05:00
|
|
|
} else if (modelName.includes('gpt-4-turbo')) {
|
2025-10-19 09:23:27 -04:00
|
|
|
return 'gpt-4-1106'; // Alias for gpt-4-turbo
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
} else if (modelName.includes('gpt-4-32k')) {
|
|
|
|
|
return '32k';
|
|
|
|
|
} else if (modelName.includes('gpt-4')) {
|
|
|
|
|
return '8k';
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return undefined;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Retrieves the multiplier for a given value key and token type. If no value key is provided,
|
|
|
|
|
* it attempts to derive it from the model name.
|
|
|
|
|
*
|
|
|
|
|
* @param {Object} params - The parameters for the function.
|
|
|
|
|
* @param {string} [params.valueKey] - The key corresponding to the model name.
|
2024-08-17 03:24:09 -04:00
|
|
|
* @param {'prompt' | 'completion'} [params.tokenType] - The type of token (e.g., 'prompt' or 'completion').
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
* @param {string} [params.model] - The model name to derive the value key from if not provided.
|
2023-12-10 14:54:13 -05:00
|
|
|
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
|
2024-02-02 00:42:11 -05:00
|
|
|
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
* @returns {number} The multiplier for the given parameters, or a default value if not found.
|
|
|
|
|
*/
|
2024-02-02 00:42:11 -05:00
|
|
|
const getMultiplier = ({ valueKey, tokenType, model, endpoint, endpointTokenConfig }) => {
|
|
|
|
|
if (endpointTokenConfig) {
|
|
|
|
|
return endpointTokenConfig?.[model]?.[tokenType] ?? defaultRate;
|
|
|
|
|
}
|
|
|
|
|
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
if (valueKey && tokenType) {
|
2023-10-06 13:21:44 -04:00
|
|
|
return tokenValues[valueKey][tokenType] ?? defaultRate;
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!tokenType || !model) {
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
2023-12-10 14:54:13 -05:00
|
|
|
valueKey = getValueKey(model, endpoint);
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
if (!valueKey) {
|
2023-10-06 13:21:44 -04:00
|
|
|
return defaultRate;
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we got this far, and values[tokenType] is undefined somehow, return a rough average of default multipliers
|
2024-08-17 03:24:09 -04:00
|
|
|
return tokenValues[valueKey]?.[tokenType] ?? defaultRate;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Retrieves the cache multiplier for a given value key and token type. If no value key is provided,
|
|
|
|
|
* it attempts to derive it from the model name.
|
|
|
|
|
*
|
|
|
|
|
* @param {Object} params - The parameters for the function.
|
|
|
|
|
* @param {string} [params.valueKey] - The key corresponding to the model name.
|
|
|
|
|
* @param {'write' | 'read'} [params.cacheType] - The type of token (e.g., 'write' or 'read').
|
|
|
|
|
* @param {string} [params.model] - The model name to derive the value key from if not provided.
|
|
|
|
|
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
|
|
|
|
|
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
|
|
|
|
|
* @returns {number | null} The multiplier for the given parameters, or `null` if not found.
|
|
|
|
|
*/
|
|
|
|
|
const getCacheMultiplier = ({ valueKey, cacheType, model, endpoint, endpointTokenConfig }) => {
|
|
|
|
|
if (endpointTokenConfig) {
|
|
|
|
|
return endpointTokenConfig?.[model]?.[cacheType] ?? null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (valueKey && cacheType) {
|
|
|
|
|
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!cacheType || !model) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
valueKey = getValueKey(model, endpoint);
|
|
|
|
|
if (!valueKey) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we got this far, and values[cacheType] is undefined somehow, return a rough average of default multipliers
|
|
|
|
|
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
|
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks
* refactor(BaseClient): accurately count completion tokens as generation only
* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM
* wip: summary prompt tokens
* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing
* refactor(createLLM): make streaming prop false by default
* chore: remove use of getTokenCountForResponse
* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace
* chore: remove passing of streaming prop, also console log useful vars for tracing
* feat: formatFromLangChain helper function to count tokens for ChatModelStart
* refactor(initializeLLM): add role for LLM tracing
* chore(formatFromLangChain): update JSDoc
* feat(formatMessages): formats langChain messages into OpenAI payload format
* chore: install openai-chat-tokens
* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring
* feat: accurate prompt tokens for ChatModelStart before generation
* refactor(handleChatModelStart): move to callbacks dir, use factory function
* refactor(initializeLLM): rename 'role' to 'context'
* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file
* refactor(initializeClient): add req,res objects to client options
* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update
* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match
* refactor(Tx): add fair fallback value multiplier incase the config result is undefined
* refactor(Balance): rename 'tokens' to 'tokenCredits'
* feat: balance check, add tx.js for new tx-related methods and tests
* chore(summaryPrompts): update prompt token count
* refactor(callbacks): pass req, res
wip: check balance
* refactor(Tx): make convoId a String type, fix(calculateTokenValue)
* refactor(BaseClient): add conversationId as client prop when assigned
* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls
* feat(spendTokens): helper to spend prompt/completion tokens
* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance
* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance
* chore: remove prompt and completion token logging from route handler
* chore(spendTokens): add JSDoc
* feat(logTokenCost): record transactions for basic api calls
* chore(ask/edit): invoke getResponseSender only once per API call
* refactor(ask/edit): pass promptTokens to getIds and include in abort data
* refactor(getIds -> getReqData): rename function
* refactor(Tx): increase value if incomplete message
* feat: record tokenUsage when message is aborted
* refactor: subtract tokens when payload includes function_call
* refactor: add namespace for token_balance
* fix(spendTokens): only execute if corresponding token type amounts are defined
* refactor(checkBalance): throws Error if not enough token credits
* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'
* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens
* fix: properly cancel title requests when there isn't enough tokens to generate
* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain
* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError
* refactor(createStartHandler): if summary, add error details to runs
* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer
* refactor(logTokenCost -> recordTokenUsage): rename
* refactor(checkBalance): include promptTokens in errorMessage
* refactor(checkBalance/spendTokens): move to models dir
* fix(createLanguageChain): correctly pass config
* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check
* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called
* refactor(createStartHandler): add error to run if context is plugins as well
* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run
* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic
* chore: use absolute equality for addTitle condition
* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional
* style: icon changes to match official
* fix(BaseClient): getTokenCountForResponse -> getTokenCount
* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc
* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled
* fix(e2e/cleanUp): cleanup new collections, import all model methods from index
* fix(config/add-balance): add uncaughtException listener
* fix: circular dependency
* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance
* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped
* fix(createStartHandler): correct condition for generations
* chore: bump postcss due to moderate severity vulnerability
* chore: bump zod due to low severity vulnerability
* chore: bump openai & data-provider version
* feat(types): OpenAI Message types
* chore: update bun lockfile
* refactor(CodeBlock): add error block formatting
* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON
* chore(logViolation): delete user_id after error is logged
* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex
* fix(DALL-E): use latest openai SDK
* chore: reorganize imports, fix type issue
* feat(server): add balance route
* fix(api/models): add auth
* feat(data-provider): /api/balance query
* feat: show balance if checking is enabled, refetch on final message or error
* chore: update docs, .env.example with token_usage info, add balance script command
* fix(Balance): fallback to empty obj for balance query
* style: slight adjustment of balance element
* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
|
|
|
};
|
|
|
|
|
|
2024-12-03 22:25:15 -05:00
|
|
|
module.exports = {
|
|
|
|
|
tokenValues,
|
|
|
|
|
getValueKey,
|
|
|
|
|
getMultiplier,
|
|
|
|
|
getCacheMultiplier,
|
|
|
|
|
defaultRate,
|
|
|
|
|
cacheTokenValues,
|
|
|
|
|
};
|