💾 feat: Anthropic Prompt Caching (#3670)

* wip: initial cache control implementation, add typing for transactions handling

* feat: first pass of Anthropic Prompt Caching

* feat: standardize stream usage as pass in when calculating token counts

* feat: Add getCacheMultiplier function to calculate cache multiplier for different valueKeys and cacheTypes

* chore: imports order

* refactor: token usage recording in AnthropicClient, no need to "correct" as we have the correct amount

* feat: more accurate token counting using stream usage data

* feat: Improve token counting accuracy with stream usage data

* refactor: ensure more accurate than not token estimations if custom instructions or files are not being resent with every request

* refactor: cleanup updateUserMessageTokenCount to allow transactions to be as accurate as possible even if we shouldn't update user message token counts

* ci: fix tests
This commit is contained in:
Danny Avila 2024-08-17 03:24:09 -04:00 committed by GitHub
parent 9f4c516615
commit a45b384bbc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 973 additions and 34 deletions

View file

@ -12,12 +12,13 @@ const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const {
truncateText,
formatMessage,
addCacheControl,
titleFunctionPrompt,
parseParamFromPrompt,
createContextHandlers,
} = require('./prompts');
const spendTokens = require('~/models/spendTokens');
const { getModelMaxTokens } = require('~/utils');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getModelMaxTokens, matchModelName } = require('~/utils');
const { sleep } = require('~/server/utils');
const BaseClient = require('./BaseClient');
const { logger } = require('~/config');
@ -32,6 +33,7 @@ function delayBeforeRetry(attempts, baseDelay = 1000) {
return new Promise((resolve) => setTimeout(resolve, baseDelay * attempts));
}
const tokenEventTypes = new Set(['message_start', 'message_delta']);
const { legacy } = anthropicSettings;
class AnthropicClient extends BaseClient {
@ -44,6 +46,24 @@ class AnthropicClient extends BaseClient {
? options.contextStrategy.toLowerCase()
: 'discard';
this.setOptions(options);
/** @type {string | undefined} */
this.systemMessage;
/** @type {AnthropicMessageStartEvent| undefined} */
this.message_start;
/** @type {AnthropicMessageDeltaEvent| undefined} */
this.message_delta;
/** Whether the model is part of the Claude 3 Family
* @type {boolean} */
this.isClaude3;
/** Whether to use Messages API or Completions API
* @type {boolean} */
this.useMessages;
/** Whether or not the model is limited to the legacy amount of output tokens
* @type {boolean} */
this.isLegacyOutput;
/** Whether or not the model supports Prompt Caching
* @type {boolean} */
this.supportsCacheControl;
}
setOptions(options) {
@ -69,8 +89,10 @@ class AnthropicClient extends BaseClient {
model: modelOptions.model || anthropicSettings.model.default,
};
this.isClaude3 = this.modelOptions.model.includes('claude-3');
this.isLegacyOutput = !this.modelOptions.model.includes('claude-3-5-sonnet');
const modelMatch = matchModelName(this.modelOptions.model, EModelEndpoint.anthropic);
this.isClaude3 = modelMatch.startsWith('claude-3');
this.isLegacyOutput = !modelMatch.startsWith('claude-3-5-sonnet');
this.supportsCacheControl = this.checkPromptCacheSupport(modelMatch);
if (
this.isLegacyOutput &&
@ -147,19 +169,74 @@ class AnthropicClient extends BaseClient {
options.baseURL = this.options.reverseProxyUrl;
}
if (requestOptions?.model && requestOptions.model.includes('claude-3-5-sonnet')) {
if (
this.supportsCacheControl &&
requestOptions?.model &&
requestOptions.model.includes('claude-3-5-sonnet')
) {
options.defaultHeaders = {
'anthropic-beta': 'max-tokens-3-5-sonnet-2024-07-15',
'anthropic-beta': 'max-tokens-3-5-sonnet-2024-07-15,prompt-caching-2024-07-31',
};
} else if (this.supportsCacheControl) {
options.defaultHeaders = {
'anthropic-beta': 'prompt-caching-2024-07-31',
};
}
return new Anthropic(options);
}
getTokenCountForResponse(response) {
/**
* Get stream usage as returned by this client's API response.
* @returns {AnthropicStreamUsage} The stream usage object.
*/
getStreamUsage() {
const inputUsage = this.message_start?.message?.usage ?? {};
const outputUsage = this.message_delta?.usage ?? {};
return Object.assign({}, inputUsage, outputUsage);
}
/**
* Calculates the correct token count for the current message based on the token count map and API usage.
* Edge case: If the calculation results in a negative value, it returns the original estimate.
* If revisiting a conversation with a chat history entirely composed of token estimates,
* the cumulative token count going forward should become more accurate as the conversation progresses.
* @param {Object} params - The parameters for the calculation.
* @param {Record<string, number>} params.tokenCountMap - A map of message IDs to their token counts.
* @param {string} params.currentMessageId - The ID of the current message to calculate.
* @param {AnthropicStreamUsage} params.usage - The usage object returned by the API.
* @returns {number} The correct token count for the current message.
*/
calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage }) {
const originalEstimate = tokenCountMap[currentMessageId] || 0;
if (!usage || typeof usage.input_tokens !== 'number') {
return originalEstimate;
}
tokenCountMap[currentMessageId] = 0;
const totalTokensFromMap = Object.values(tokenCountMap).reduce((sum, count) => {
const numCount = Number(count);
return sum + (isNaN(numCount) ? 0 : numCount);
}, 0);
const totalInputTokens =
(usage.input_tokens ?? 0) +
(usage.cache_creation_input_tokens ?? 0) +
(usage.cache_read_input_tokens ?? 0);
const currentMessageTokens = totalInputTokens - totalTokensFromMap;
return currentMessageTokens > 0 ? currentMessageTokens : originalEstimate;
}
/**
* Get Token Count for LibreChat Message
* @param {TMessage} responseMessage
* @returns {number}
*/
getTokenCountForResponse(responseMessage) {
return this.getTokenCountForMessage({
role: 'assistant',
content: response.text,
content: responseMessage.text,
});
}
@ -212,7 +289,38 @@ class AnthropicClient extends BaseClient {
return files;
}
async recordTokenUsage({ promptTokens, completionTokens, model, context = 'message' }) {
/**
* @param {object} params
* @param {number} params.promptTokens
* @param {number} params.completionTokens
* @param {AnthropicStreamUsage} [params.usage]
* @param {string} [params.model]
* @param {string} [params.context='message']
* @returns {Promise<void>}
*/
async recordTokenUsage({ promptTokens, completionTokens, usage, model, context = 'message' }) {
if (usage != null && usage?.input_tokens != null) {
const input = usage.input_tokens ?? 0;
const write = usage.cache_creation_input_tokens ?? 0;
const read = usage.cache_read_input_tokens ?? 0;
await spendStructuredTokens(
{
context,
user: this.user,
conversationId: this.conversationId,
model: model ?? this.modelOptions.model,
endpointTokenConfig: this.options.endpointTokenConfig,
},
{
promptTokens: { input, write, read },
completionTokens,
},
);
return;
}
await spendTokens(
{
context,
@ -560,6 +668,18 @@ class AnthropicClient extends BaseClient {
: await client.completions.create(options);
}
/**
* @param {string} modelName
* @returns {boolean}
*/
checkPromptCacheSupport(modelName) {
const modelMatch = matchModelName(modelName, EModelEndpoint.anthropic);
if (modelMatch === 'claude-3-5-sonnet' || modelMatch === 'claude-3-haiku') {
return true;
}
return false;
}
async sendCompletion(payload, { onProgress, abortController }) {
if (!abortController) {
abortController = new AbortController();
@ -606,10 +726,22 @@ class AnthropicClient extends BaseClient {
requestOptions.max_tokens_to_sample = maxOutputTokens || 1500;
}
if (this.systemMessage) {
if (this.systemMessage && this.supportsCacheControl === true) {
requestOptions.system = [
{
type: 'text',
text: this.systemMessage,
cache_control: { type: 'ephemeral' },
},
];
} else if (this.systemMessage) {
requestOptions.system = this.systemMessage;
}
if (this.supportsCacheControl === true && this.useMessages) {
requestOptions.messages = addCacheControl(requestOptions.messages);
}
logger.debug('[AnthropicClient]', { ...requestOptions });
const handleChunk = (currentChunk) => {
@ -639,6 +771,11 @@ class AnthropicClient extends BaseClient {
for await (const completion of response) {
// Handle each completion as before
const type = completion?.type ?? '';
if (tokenEventTypes.has(type)) {
logger.debug(`[AnthropicClient] ${type}`, completion);
this[type] = completion;
}
if (completion?.delta?.text) {
handleChunk(completion.delta.text);
} else if (completion.completion) {
@ -727,6 +864,8 @@ class AnthropicClient extends BaseClient {
*/
async titleConvo({ text, responseText = '' }) {
let title = 'New Chat';
this.message_delta = undefined;
this.message_start = undefined;
const convo = `<initial_message>
${truncateText(text)}
</initial_message>

View file

@ -54,10 +54,22 @@ class BaseClient {
throw new Error('Subclasses attempted to call summarizeMessages without implementing it');
}
async getTokenCountForResponse(response) {
logger.debug('`[BaseClient] recordTokenUsage` not implemented.', response);
/**
* Abstract method to get the token count for a message. Subclasses must implement this method.
* @param {TMessage} responseMessage
* @returns {number}
*/
getTokenCountForResponse(responseMessage) {
logger.debug('`[BaseClient] recordTokenUsage` not implemented.', responseMessage);
}
/**
* Abstract method to record token usage. Subclasses must implement this method.
* If a correction to the token usage is needed, the method should return an object with the corrected token counts.
* @param {number} promptTokens
* @param {number} completionTokens
* @returns {Promise<void>}
*/
async recordTokenUsage({ promptTokens, completionTokens }) {
logger.debug('`[BaseClient] recordTokenUsage` not implemented.', {
promptTokens,
@ -536,13 +548,31 @@ class BaseClient {
this.getTokenCountForResponse &&
this.getTokenCount
) {
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
const completionTokens = this.getTokenCount(completion);
await this.recordTokenUsage({ promptTokens, completionTokens });
let completionTokens;
/**
* Metadata about input/output costs for the current message. The client
* should provide a function to get the current stream usage metadata; if not,
* use the legacy token estimations.
* @type {StreamUsage | null} */
const usage = this.getStreamUsage != null ? this.getStreamUsage() : null;
if (usage != null && Number(usage.output_tokens) > 0) {
responseMessage.tokenCount = usage.output_tokens;
completionTokens = responseMessage.tokenCount;
await this.updateUserMessageTokenCount({ usage, tokenCountMap, userMessage, opts });
} else {
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
completionTokens = this.getTokenCount(completion);
}
await this.recordTokenUsage({ promptTokens, completionTokens, usage });
}
if (this.userMessagePromise) {
await this.userMessagePromise;
}
this.responsePromise = this.saveMessageToDatabase(responseMessage, saveOptions, user);
const messageCache = getLogStores(CacheKeys.MESSAGES);
messageCache.set(
@ -557,6 +587,66 @@ class BaseClient {
return responseMessage;
}
/**
* Stream usage should only be used for user message token count re-calculation if:
* - The stream usage is available, with input tokens greater than 0,
* - the client provides a function to calculate the current token count,
* - files are being resent with every message (default behavior; or if `false`, with no attachments),
* - the `promptPrefix` (custom instructions) is not set.
*
* In these cases, the legacy token estimations would be more accurate.
*
* TODO: included system messages in the `orderedMessages` accounting, potentially as a
* separate message in the UI. ChatGPT does this through "hidden" system messages.
* @param {object} params
* @param {StreamUsage} params.usage
* @param {Record<string, number>} params.tokenCountMap
* @param {TMessage} params.userMessage
* @param {object} params.opts
*/
async updateUserMessageTokenCount({ usage, tokenCountMap, userMessage, opts }) {
/** @type {boolean} */
const shouldUpdateCount =
this.calculateCurrentTokenCount != null &&
Number(usage.input_tokens) > 0 &&
(this.options.resendFiles ||
(!this.options.resendFiles && !this.options.attachments?.length)) &&
!this.options.promptPrefix;
if (!shouldUpdateCount) {
return;
}
const userMessageTokenCount = this.calculateCurrentTokenCount({
currentMessageId: userMessage.messageId,
tokenCountMap,
usage,
});
if (userMessageTokenCount === userMessage.tokenCount) {
return;
}
userMessage.tokenCount = userMessageTokenCount;
/*
Note: `AskController` saves the user message, so we update the count of its `userMessage` reference
*/
if (typeof opts?.getReqData === 'function') {
opts.getReqData({
userMessage,
});
}
/*
Note: we update the user message to be sure it gets the calculated token count;
though `AskController` saves the user message, EditController does not
*/
await this.userMessagePromise;
await this.updateMessageInDatabase({
messageId: userMessage.messageId,
tokenCount: userMessageTokenCount,
});
}
async loadHistory(conversationId, parentMessageId = null) {
logger.debug('[BaseClient] Loading history:', { conversationId, parentMessageId });
@ -644,6 +734,10 @@ class BaseClient {
return { message: savedMessage, conversation };
}
/**
* Update a message in the database.
* @param {Partial<TMessage>} message
*/
async updateMessageInDatabase(message) {
await updateMessage(this.options.req, message);
}

View file

@ -27,9 +27,9 @@ const {
createContextHandlers,
} = require('./prompts');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const { spendTokens } = require('~/models/spendTokens');
const { isEnabled, sleep } = require('~/server/utils');
const { handleOpenAIErrors } = require('./tools/util');
const spendTokens = require('~/models/spendTokens');
const { createLLM, RunManager } = require('./llm');
const ChatGPTClient = require('./ChatGPTClient');
const { summaryBuffer } = require('./memory');

View file

@ -1,5 +1,5 @@
const { createStartHandler } = require('~/app/clients/callbacks');
const spendTokens = require('~/models/spendTokens');
const { spendTokens } = require('~/models/spendTokens');
const { logger } = require('~/config');
class RunManager {

View file

@ -0,0 +1,43 @@
/**
* Anthropic API: Adds cache control to the appropriate user messages in the payload.
* @param {Array<AnthropicMessage>} messages - The array of message objects.
* @returns {Array<AnthropicMessage>} - The updated array of message objects with cache control added.
*/
function addCacheControl(messages) {
if (!Array.isArray(messages) || messages.length < 2) {
return messages;
}
const updatedMessages = [...messages];
let userMessagesFound = 0;
for (let i = updatedMessages.length - 1; i >= 0 && userMessagesFound < 2; i--) {
if (updatedMessages[i].role === 'user') {
if (typeof updatedMessages[i].content === 'string') {
updatedMessages[i] = {
...updatedMessages[i],
content: [
{
type: 'text',
text: updatedMessages[i].content,
cache_control: { type: 'ephemeral' },
},
],
};
} else if (Array.isArray(updatedMessages[i].content)) {
updatedMessages[i] = {
...updatedMessages[i],
content: updatedMessages[i].content.map((item) => ({
...item,
cache_control: { type: 'ephemeral' },
})),
};
}
userMessagesFound++;
}
}
return updatedMessages;
}
module.exports = addCacheControl;

View file

@ -0,0 +1,164 @@
const addCacheControl = require('./addCacheControl');
describe('addCacheControl', () => {
test('should add cache control to the last two user messages with array content', () => {
const messages = [
{ role: 'user', content: [{ type: 'text', text: 'Hello' }] },
{ role: 'assistant', content: [{ type: 'text', text: 'Hi there' }] },
{ role: 'user', content: [{ type: 'text', text: 'How are you?' }] },
{ role: 'assistant', content: [{ type: 'text', text: 'I\'m doing well, thanks!' }] },
{ role: 'user', content: [{ type: 'text', text: 'Great!' }] },
];
const result = addCacheControl(messages);
expect(result[0].content[0]).not.toHaveProperty('cache_control');
expect(result[2].content[0].cache_control).toEqual({ type: 'ephemeral' });
expect(result[4].content[0].cache_control).toEqual({ type: 'ephemeral' });
});
test('should add cache control to the last two user messages with string content', () => {
const messages = [
{ role: 'user', content: 'Hello' },
{ role: 'assistant', content: 'Hi there' },
{ role: 'user', content: 'How are you?' },
{ role: 'assistant', content: 'I\'m doing well, thanks!' },
{ role: 'user', content: 'Great!' },
];
const result = addCacheControl(messages);
expect(result[0].content).toBe('Hello');
expect(result[2].content[0]).toEqual({
type: 'text',
text: 'How are you?',
cache_control: { type: 'ephemeral' },
});
expect(result[4].content[0]).toEqual({
type: 'text',
text: 'Great!',
cache_control: { type: 'ephemeral' },
});
});
test('should handle mixed string and array content', () => {
const messages = [
{ role: 'user', content: 'Hello' },
{ role: 'assistant', content: 'Hi there' },
{ role: 'user', content: [{ type: 'text', text: 'How are you?' }] },
];
const result = addCacheControl(messages);
expect(result[0].content[0]).toEqual({
type: 'text',
text: 'Hello',
cache_control: { type: 'ephemeral' },
});
expect(result[2].content[0].cache_control).toEqual({ type: 'ephemeral' });
});
test('should handle less than two user messages', () => {
const messages = [
{ role: 'user', content: 'Hello' },
{ role: 'assistant', content: 'Hi there' },
];
const result = addCacheControl(messages);
expect(result[0].content[0]).toEqual({
type: 'text',
text: 'Hello',
cache_control: { type: 'ephemeral' },
});
expect(result[1].content).toBe('Hi there');
});
test('should return original array if no user messages', () => {
const messages = [
{ role: 'assistant', content: 'Hi there' },
{ role: 'assistant', content: 'How can I help?' },
];
const result = addCacheControl(messages);
expect(result).toEqual(messages);
});
test('should handle empty array', () => {
const messages = [];
const result = addCacheControl(messages);
expect(result).toEqual([]);
});
test('should handle non-array input', () => {
const messages = 'not an array';
const result = addCacheControl(messages);
expect(result).toBe('not an array');
});
test('should not modify assistant messages', () => {
const messages = [
{ role: 'user', content: 'Hello' },
{ role: 'assistant', content: 'Hi there' },
{ role: 'user', content: 'How are you?' },
];
const result = addCacheControl(messages);
expect(result[1].content).toBe('Hi there');
});
test('should handle multiple content items in user messages', () => {
const messages = [
{
role: 'user',
content: [
{ type: 'text', text: 'Hello' },
{ type: 'image', url: 'http://example.com/image.jpg' },
],
},
{ role: 'assistant', content: 'Hi there' },
{ role: 'user', content: 'How are you?' },
];
const result = addCacheControl(messages);
expect(result[0].content[0].cache_control).toEqual({ type: 'ephemeral' });
expect(result[0].content[1].cache_control).toEqual({ type: 'ephemeral' });
expect(result[2].content[0]).toEqual({
type: 'text',
text: 'How are you?',
cache_control: { type: 'ephemeral' },
});
});
test('should handle an array with mixed content types', () => {
const messages = [
{ role: 'user', content: 'Hello' },
{ role: 'assistant', content: 'Hi there' },
{ role: 'user', content: [{ type: 'text', text: 'How are you?' }] },
{ role: 'assistant', content: 'I\'m doing well, thanks!' },
{ role: 'user', content: 'Great!' },
];
const result = addCacheControl(messages);
console.dir(result, { depth: null });
expect(result[0].content).toEqual('Hello');
expect(result[2].content[0]).toEqual({
type: 'text',
text: 'How are you?',
cache_control: { type: 'ephemeral' },
});
expect(result[4].content).toEqual([
{
type: 'text',
text: 'Great!',
cache_control: { type: 'ephemeral' },
},
]);
expect(result[1].content).toBe('Hi there');
expect(result[3].content).toBe('I\'m doing well, thanks!');
});
});

View file

@ -1,3 +1,4 @@
const addCacheControl = require('./addCacheControl');
const formatMessages = require('./formatMessages');
const summaryPrompts = require('./summaryPrompts');
const handleInputs = require('./handleInputs');
@ -8,6 +9,7 @@ const createVisionPrompt = require('./createVisionPrompt');
const createContextHandlers = require('./createContextHandlers');
module.exports = {
addCacheControl,
...formatMessages,
...summaryPrompts,
...handleInputs,

View file

@ -211,7 +211,21 @@ describe('AnthropicClient', () => {
expect(anthropicClient._options.defaultHeaders).toBeDefined();
expect(anthropicClient._options.defaultHeaders).toHaveProperty('anthropic-beta');
expect(anthropicClient._options.defaultHeaders['anthropic-beta']).toBe(
'max-tokens-3-5-sonnet-2024-07-15',
'max-tokens-3-5-sonnet-2024-07-15,prompt-caching-2024-07-31',
);
});
it('should add beta header for claude-3-haiku model', () => {
const client = new AnthropicClient('test-api-key');
const modelOptions = {
model: 'claude-3-haiku-2028',
};
client.setOptions({ modelOptions });
const anthropicClient = client.getClient(modelOptions);
expect(anthropicClient._options.defaultHeaders).toBeDefined();
expect(anthropicClient._options.defaultHeaders).toHaveProperty('anthropic-beta');
expect(anthropicClient._options.defaultHeaders['anthropic-beta']).toBe(
'prompt-caching-2024-07-31',
);
});
@ -226,4 +240,145 @@ describe('AnthropicClient', () => {
expect(anthropicClient.defaultHeaders).not.toHaveProperty('anthropic-beta');
});
});
describe('calculateCurrentTokenCount', () => {
let client;
beforeEach(() => {
client = new AnthropicClient('test-api-key');
});
it('should calculate correct token count when usage is provided', () => {
const tokenCountMap = {
msg1: 10,
msg2: 20,
currentMsg: 30,
};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 70,
output_tokens: 50,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(40); // 70 - (10 + 20) = 40
});
it('should return original estimate if calculation results in negative value', () => {
const tokenCountMap = {
msg1: 40,
msg2: 50,
currentMsg: 30,
};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 80,
output_tokens: 50,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(30); // Original estimate
});
it('should handle cache creation and read input tokens', () => {
const tokenCountMap = {
msg1: 10,
msg2: 20,
currentMsg: 30,
};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 50,
cache_creation_input_tokens: 10,
cache_read_input_tokens: 20,
output_tokens: 40,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(50); // (50 + 10 + 20) - (10 + 20) = 50
});
it('should handle missing usage properties', () => {
const tokenCountMap = {
msg1: 10,
msg2: 20,
currentMsg: 30,
};
const currentMessageId = 'currentMsg';
const usage = {
output_tokens: 40,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(30); // Original estimate
});
it('should handle empty tokenCountMap', () => {
const tokenCountMap = {};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 50,
output_tokens: 40,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(50);
expect(Number.isNaN(result)).toBe(false);
});
it('should handle zero values in usage', () => {
const tokenCountMap = {
msg1: 10,
currentMsg: 20,
};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 0,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 0,
output_tokens: 0,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(20); // Should return original estimate
expect(Number.isNaN(result)).toBe(false);
});
it('should handle undefined usage', () => {
const tokenCountMap = {
msg1: 10,
currentMsg: 20,
};
const currentMessageId = 'currentMsg';
const usage = undefined;
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(20); // Should return original estimate
expect(Number.isNaN(result)).toBe(false);
});
it('should handle non-numeric values in tokenCountMap', () => {
const tokenCountMap = {
msg1: 'ten',
currentMsg: 20,
};
const currentMessageId = 'currentMsg';
const usage = {
input_tokens: 30,
output_tokens: 10,
};
const result = client.calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage });
expect(result).toBe(30); // Should return 30 (input_tokens) - 0 (ignored 'ten') = 30
expect(Number.isNaN(result)).toBe(false);
});
});
});

View file

@ -212,8 +212,8 @@ async function updateMessageText(req, { messageId, text }) {
*
* @async
* @function updateMessage
* @param {Object} message - The message object containing update data.
* @param {Object} req - The request object.
* @param {Object} message - The message object containing update data.
* @param {string} message.messageId - The unique identifier for the message.
* @param {string} [message.text] - The new text content of the message.
* @param {Object[]} [message.files] - The files associated with the message.

View file

@ -1,12 +1,12 @@
const mongoose = require('mongoose');
const { isEnabled } = require('../server/utils/handleText');
const transactionSchema = require('./schema/transaction');
const { getMultiplier } = require('./tx');
const { getMultiplier, getCacheMultiplier } = require('./tx');
const { logger } = require('~/config');
const Balance = require('./Balance');
const cancelRate = 1.15;
// Method to calculate and set the tokenValue for a transaction
/** Method to calculate and set the tokenValue for a transaction */
transactionSchema.methods.calculateTokenValue = function () {
if (!this.valueKey || !this.tokenType) {
this.tokenValue = this.rawAmount;
@ -21,15 +21,17 @@ transactionSchema.methods.calculateTokenValue = function () {
}
};
// Static method to create a transaction and update the balance
transactionSchema.statics.create = async function (transactionData) {
/**
* Static method to create a transaction and update the balance
* @param {txData} txData - Transaction data.
*/
transactionSchema.statics.create = async function (txData) {
const Transaction = this;
const transaction = new Transaction(transactionData);
transaction.endpointTokenConfig = transactionData.endpointTokenConfig;
const transaction = new Transaction(txData);
transaction.endpointTokenConfig = txData.endpointTokenConfig;
transaction.calculateTokenValue();
// Save the transaction
await transaction.save();
if (!isEnabled(process.env.CHECK_BALANCE)) {
@ -57,6 +59,104 @@ transactionSchema.statics.create = async function (transactionData) {
};
};
/**
* Static method to create a structured transaction and update the balance
* @param {txData} txData - Transaction data.
*/
transactionSchema.statics.createStructured = async function (txData) {
const Transaction = this;
const transaction = new Transaction({
...txData,
endpointTokenConfig: txData.endpointTokenConfig,
});
transaction.calculateStructuredTokenValue();
await transaction.save();
if (!isEnabled(process.env.CHECK_BALANCE)) {
return transaction;
}
let balance = await Balance.findOne({ user: transaction.user }).lean();
let incrementValue = transaction.tokenValue;
if (balance && balance?.tokenCredits + incrementValue < 0) {
incrementValue = -balance.tokenCredits;
}
balance = await Balance.findOneAndUpdate(
{ user: transaction.user },
{ $inc: { tokenCredits: incrementValue } },
{ upsert: true, new: true },
).lean();
return {
rate: transaction.rate,
user: transaction.user.toString(),
balance: balance.tokenCredits,
[transaction.tokenType]: incrementValue,
};
};
/** Method to calculate token value for structured tokens */
transactionSchema.methods.calculateStructuredTokenValue = function () {
if (!this.tokenType) {
this.tokenValue = this.rawAmount;
return;
}
const { model, endpointTokenConfig } = this;
if (this.tokenType === 'prompt') {
const inputMultiplier = getMultiplier({ tokenType: 'prompt', model, endpointTokenConfig });
const writeMultiplier =
getCacheMultiplier({ cacheType: 'write', model, endpointTokenConfig }) ?? inputMultiplier;
const readMultiplier =
getCacheMultiplier({ cacheType: 'read', model, endpointTokenConfig }) ?? inputMultiplier;
this.rateDetail = {
input: inputMultiplier,
write: writeMultiplier,
read: readMultiplier,
};
const totalTokens = (this.inputTokens || 0) + (this.writeTokens || 0) + (this.readTokens || 0);
if (totalTokens > 0) {
this.rate =
(inputMultiplier * (this.inputTokens || 0) +
writeMultiplier * (this.writeTokens || 0) +
readMultiplier * (this.readTokens || 0)) /
totalTokens;
} else {
this.rate = inputMultiplier; // Default to input rate if no tokens
}
this.tokenValue =
this.inputTokens * inputMultiplier +
(this.writeTokens || 0) * writeMultiplier +
(this.readTokens || 0) * readMultiplier;
} else {
const multiplier = Math.abs(
getMultiplier({ tokenType: this.tokenType, model, endpointTokenConfig }),
);
this.rate = multiplier;
this.tokenValue = this.rawAmount * multiplier;
}
if (this.context && this.tokenType === 'completion' && this.context === 'incomplete') {
this.tokenValue = Math.ceil(this.tokenValue * cancelRate);
this.rate *= cancelRate;
if (this.rateDetail) {
this.rateDetail = Object.fromEntries(
Object.entries(this.rateDetail).map(([k, v]) => [k, v * cancelRate]),
);
}
}
};
const Transaction = mongoose.model('Transaction', transactionSchema);
/**

View file

@ -30,6 +30,9 @@ const transactionSchema = mongoose.Schema(
rate: Number,
rawAmount: Number,
tokenValue: Number,
inputTokens: { type: Number },
writeTokens: { type: Number },
readTokens: { type: Number },
},
{
timestamps: true,

View file

@ -11,7 +11,7 @@ const { logger } = require('~/config');
* @param {String} txData.conversationId - The ID of the conversation.
* @param {String} txData.model - The model name.
* @param {String} txData.context - The context in which the transaction is made.
* @param {String} [txData.endpointTokenConfig] - The current endpoint token config.
* @param {EndpointTokenConfig} [txData.endpointTokenConfig] - The current endpoint token config.
* @param {String} [txData.valueKey] - The value key (optional).
* @param {Object} tokenUsage - The number of tokens used.
* @param {Number} tokenUsage.promptTokens - The number of prompt tokens used.
@ -66,4 +66,74 @@ const spendTokens = async (txData, tokenUsage) => {
}
};
module.exports = spendTokens;
/**
* Creates transactions to record the spending of structured tokens.
*
* @function
* @async
* @param {Object} txData - Transaction data.
* @param {mongoose.Schema.Types.ObjectId} txData.user - The user ID.
* @param {String} txData.conversationId - The ID of the conversation.
* @param {String} txData.model - The model name.
* @param {String} txData.context - The context in which the transaction is made.
* @param {EndpointTokenConfig} [txData.endpointTokenConfig] - The current endpoint token config.
* @param {String} [txData.valueKey] - The value key (optional).
* @param {Object} tokenUsage - The number of tokens used.
* @param {Object} tokenUsage.promptTokens - The number of prompt tokens used.
* @param {Number} tokenUsage.promptTokens.input - The number of input tokens.
* @param {Number} tokenUsage.promptTokens.write - The number of write tokens.
* @param {Number} tokenUsage.promptTokens.read - The number of read tokens.
* @param {Number} tokenUsage.completionTokens - The number of completion tokens used.
* @returns {Promise<void>} - Returns nothing.
* @throws {Error} - Throws an error if there's an issue creating the transactions.
*/
const spendStructuredTokens = async (txData, tokenUsage) => {
const { promptTokens, completionTokens } = tokenUsage;
logger.debug(
`[spendStructuredTokens] conversationId: ${txData.conversationId}${
txData?.context ? ` | Context: ${txData?.context}` : ''
} | Token usage: `,
{
promptTokens,
completionTokens,
},
);
let prompt, completion;
try {
if (promptTokens) {
const { input = 0, write = 0, read = 0 } = promptTokens;
const promptAmount = input + write + read;
prompt = await Transaction.createStructured({
...txData,
tokenType: 'prompt',
rawAmount: -promptAmount,
inputTokens: input,
writeTokens: write,
readTokens: read,
});
}
if (completionTokens) {
completion = await Transaction.create({
...txData,
tokenType: 'completion',
rawAmount: -completionTokens,
});
}
prompt &&
completion &&
logger.debug('[spendStructuredTokens] Transaction data record against balance:', {
user: txData.user,
prompt: prompt.tokenValue,
promptRate: prompt.rate,
completion: completion.tokenValue,
completionRate: completion.rate,
balance: completion.balance,
});
} catch (err) {
logger.error('[spendStructuredTokens]', err);
}
};
module.exports = { spendTokens, spendStructuredTokens };

View file

@ -70,6 +70,17 @@ const tokenValues = Object.assign(
bedrockValues,
);
/**
* Mapping of model token sizes to their respective multipliers for cached input, read and write.
* See Anthropic's documentation on this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#pricing
* The rates are 1 USD per 1M tokens.
* @type {Object.<string, {write: number, read: number }>}
*/
const cacheTokenValues = {
'claude-3-5-sonnet': { write: 3.75, read: 0.3 },
'claude-3-haiku': { write: 0.3, read: 0.03 },
};
/**
* Retrieves the key associated with a given model name.
*
@ -122,7 +133,7 @@ const getValueKey = (model, endpoint) => {
*
* @param {Object} params - The parameters for the function.
* @param {string} [params.valueKey] - The key corresponding to the model name.
* @param {string} [params.tokenType] - The type of token (e.g., 'prompt' or 'completion').
* @param {'prompt' | 'completion'} [params.tokenType] - The type of token (e.g., 'prompt' or 'completion').
* @param {string} [params.model] - The model name to derive the value key from if not provided.
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
@ -147,7 +158,41 @@ const getMultiplier = ({ valueKey, tokenType, model, endpoint, endpointTokenConf
}
// If we got this far, and values[tokenType] is undefined somehow, return a rough average of default multipliers
return tokenValues[valueKey][tokenType] ?? defaultRate;
return tokenValues[valueKey]?.[tokenType] ?? defaultRate;
};
module.exports = { tokenValues, getValueKey, getMultiplier, defaultRate };
/**
* Retrieves the cache multiplier for a given value key and token type. If no value key is provided,
* it attempts to derive it from the model name.
*
* @param {Object} params - The parameters for the function.
* @param {string} [params.valueKey] - The key corresponding to the model name.
* @param {'write' | 'read'} [params.cacheType] - The type of token (e.g., 'write' or 'read').
* @param {string} [params.model] - The model name to derive the value key from if not provided.
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
* @returns {number | null} The multiplier for the given parameters, or `null` if not found.
*/
const getCacheMultiplier = ({ valueKey, cacheType, model, endpoint, endpointTokenConfig }) => {
if (endpointTokenConfig) {
return endpointTokenConfig?.[model]?.[cacheType] ?? null;
}
if (valueKey && cacheType) {
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
}
if (!cacheType || !model) {
return null;
}
valueKey = getValueKey(model, endpoint);
if (!valueKey) {
return null;
}
// If we got this far, and values[cacheType] is undefined somehow, return a rough average of default multipliers
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
};
module.exports = { tokenValues, getValueKey, getMultiplier, getCacheMultiplier, defaultRate };

View file

@ -1,4 +1,10 @@
const { getValueKey, getMultiplier, defaultRate, tokenValues } = require('./tx');
const {
defaultRate,
tokenValues,
getValueKey,
getMultiplier,
getCacheMultiplier,
} = require('./tx');
describe('getValueKey', () => {
it('should return "16k" for model name containing "gpt-3.5-turbo-16k"', () => {
@ -243,3 +249,76 @@ describe('AWS Bedrock Model Tests', () => {
expect(results.every(Boolean)).toBe(true);
});
});
describe('getCacheMultiplier', () => {
it('should return the correct cache multiplier for a given valueKey and cacheType', () => {
expect(getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'write' })).toBe(3.75);
expect(getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'read' })).toBe(0.3);
expect(getCacheMultiplier({ valueKey: 'claude-3-haiku', cacheType: 'write' })).toBe(0.3);
expect(getCacheMultiplier({ valueKey: 'claude-3-haiku', cacheType: 'read' })).toBe(0.03);
});
it('should return null if cacheType is provided but not found in cacheTokenValues', () => {
expect(
getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'unknownType' }),
).toBeNull();
});
it('should derive the valueKey from the model if not provided', () => {
expect(getCacheMultiplier({ cacheType: 'write', model: 'claude-3-5-sonnet-20240620' })).toBe(
3.75,
);
expect(getCacheMultiplier({ cacheType: 'read', model: 'claude-3-haiku-20240307' })).toBe(0.03);
});
it('should return null if only model or cacheType is missing', () => {
expect(getCacheMultiplier({ cacheType: 'write' })).toBeNull();
expect(getCacheMultiplier({ model: 'claude-3-5-sonnet' })).toBeNull();
});
it('should return null if derived valueKey does not match any known patterns', () => {
expect(getCacheMultiplier({ cacheType: 'write', model: 'gpt-4-some-other-info' })).toBeNull();
});
it('should handle endpointTokenConfig if provided', () => {
const endpointTokenConfig = {
'custom-model': {
write: 5,
read: 1,
},
};
expect(
getCacheMultiplier({ model: 'custom-model', cacheType: 'write', endpointTokenConfig }),
).toBe(5);
expect(
getCacheMultiplier({ model: 'custom-model', cacheType: 'read', endpointTokenConfig }),
).toBe(1);
});
it('should return null if model is not found in endpointTokenConfig', () => {
const endpointTokenConfig = {
'custom-model': {
write: 5,
read: 1,
},
};
expect(
getCacheMultiplier({ model: 'unknown-model', cacheType: 'write', endpointTokenConfig }),
).toBeNull();
});
it('should handle models with "bedrock/" prefix', () => {
expect(
getCacheMultiplier({
model: 'bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0',
cacheType: 'write',
}),
).toBe(3.75);
expect(
getCacheMultiplier({
model: 'bedrock/anthropic.claude-3-haiku-20240307-v1:0',
cacheType: 'read',
}),
).toBe(0.03);
});
});

View file

@ -2,9 +2,9 @@ const { isAssistantsEndpoint } = require('librechat-data-provider');
const { sendMessage, sendError, countTokens, isEnabled } = require('~/server/utils');
const { truncateText, smartTruncateText } = require('~/app/clients/prompts');
const clearPendingReq = require('~/cache/clearPendingReq');
const { spendTokens } = require('~/models/spendTokens');
const abortControllers = require('./abortControllers');
const { saveMessage, getConvo } = require('~/models');
const spendTokens = require('~/models/spendTokens');
const { abortRun } = require('./abortRun');
const { logger } = require('~/config');

View file

@ -8,8 +8,8 @@ const {
} = require('librechat-data-provider');
const { retrieveAndProcessFile } = require('~/server/services/Files/process');
const { recordMessage, getMessages } = require('~/models/Message');
const { spendTokens } = require('~/models/spendTokens');
const { saveConvo } = require('~/models/Conversation');
const spendTokens = require('~/models/spendTokens');
const { countTokens } = require('~/server/utils');
/**

View file

@ -26,6 +26,24 @@
* @memberof typedefs
*/
/**
* @exports AnthropicMessage
* @typedef {import('@anthropic-ai/sdk').default.MessageParam} AnthropicMessage
* @memberof typedefs
*/
/**
* @exports AnthropicMessageStartEvent
* @typedef {import('@anthropic-ai/sdk').default.MessageStartEvent} AnthropicMessageStartEvent
* @memberof typedefs
*/
/**
* @exports AnthropicMessageDeltaEvent
* @typedef {import('@anthropic-ai/sdk').default.MessageDeltaEvent} AnthropicMessageDeltaEvent
* @memberof typedefs
*/
/**
* @exports GenerativeModel
* @typedef {import('@google/generative-ai').GenerativeModel} GenerativeModel
@ -1311,6 +1329,33 @@
* @method messageCompleted Handles the completion of a message processing.
*/
/* TX Types */
/**
* @typedef {object} txData - Transaction data.
* @property {mongoose.Schema.Types.ObjectId} user - The user ID.
* @property {String} conversationId - The ID of the conversation.
* @property {String} model - The model name.
* @property {String} context - The context in which the transaction is made.
* @property {EndpointTokenConfig} [endpointTokenConfig] - The current endpoint token config.
* @property {object} [cacheUsage] - Cache usage, if any.
* @property {String} [valueKey] - The value key (optional).
* @memberof typedefs
*/
/**
* https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#pricing
* @typedef {object} AnthropicStreamUsage - Stream usage for Anthropic
* @property {number} [input_tokens] - The number of input tokens used.
* @property {number} [cache_creation_input_tokens] - The number of cache creation input tokens used (write).
* @property {number} [cache_read_input_tokens] - The number of cache input tokens used (read).
* @property {number} [output_tokens] - The number of output tokens used.
*/
/**
* @typedef {AnthropicStreamUsage} StreamUsage - Stream usage for all providers (currently only Anthropic)
*/
/* Native app/client methods */
/**