"""Generate a normalized theme catalog CSV from card datasets. Outputs `theme_catalog.csv` with deterministic ordering, a reproducible version hash, and per-source occurrence counts so supplemental theme workflows can reuse the catalog. """ from __future__ import annotations import argparse import ast import csv import hashlib import json import os import shutil import sys from collections import Counter, defaultdict from dataclasses import dataclass from datetime import datetime, timezone from pathlib import Path from typing import Dict, Iterable, List, Optional, Sequence try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False pd = None # type: ignore ROOT = Path(__file__).resolve().parents[2] CODE_ROOT = ROOT / "code" if str(CODE_ROOT) not in sys.path: sys.path.insert(0, str(CODE_ROOT)) try: from code.settings import CSV_DIRECTORY as DEFAULT_CSV_DIRECTORY except Exception: # pragma: no cover - fallback for adhoc execution DEFAULT_CSV_DIRECTORY = "csv_files" # Parquet support requires pandas (imported at top of file, uses pyarrow under the hood) HAS_PARQUET_SUPPORT = HAS_PANDAS DEFAULT_OUTPUT_PATH = ROOT / "config" / "themes" / "theme_catalog.csv" HEADER_COMMENT_PREFIX = "# theme_catalog" @dataclass(slots=True) class CatalogRow: theme: str source_count: int commander_count: int card_count: int last_generated_at: str version: str @dataclass(slots=True) class CatalogBuildResult: rows: List[CatalogRow] generated_at: str version: str output_path: Path def normalize_theme_display(raw: str) -> str: trimmed = " ".join(raw.strip().split()) return trimmed def canonical_key(raw: str) -> str: return normalize_theme_display(raw).casefold() def parse_theme_tags(value: object) -> List[str]: if value is None: return [] # Handle numpy arrays (from Parquet files) if hasattr(value, '__array__') or hasattr(value, 'tolist'): try: value = value.tolist() if hasattr(value, 'tolist') else list(value) except Exception: pass if isinstance(value, list): return [str(v) for v in value if isinstance(v, str) and v.strip()] if isinstance(value, str): candidate = value.strip() if not candidate: return [] # Try JSON parsing first (themeTags often stored as JSON arrays) try: parsed = json.loads(candidate) except json.JSONDecodeError: parsed = None if isinstance(parsed, list): return [str(v) for v in parsed if isinstance(v, str) and v.strip()] # Fallback to Python literal lists try: literal = ast.literal_eval(candidate) except (ValueError, SyntaxError): literal = None if isinstance(literal, list): return [str(v) for v in literal if isinstance(v, str) and v.strip()] return [candidate] return [] def _load_theme_counts_from_parquet( parquet_path: Path, theme_variants: Dict[str, set[str]] ) -> Counter[str]: """Load theme counts from a parquet file using pandas (which uses pyarrow). Args: parquet_path: Path to the parquet file (commander_cards.parquet or all_cards.parquet) theme_variants: Dict to accumulate theme name variants Returns: Counter of theme occurrences """ if pd is None: print(" pandas not available, skipping parquet load") return Counter() counts: Counter[str] = Counter() if not parquet_path.exists(): print(f" Parquet file does not exist: {parquet_path}") return counts # Read only themeTags column for efficiency try: df = pd.read_parquet(parquet_path, columns=["themeTags"]) print(f" Loaded {len(df)} rows from parquet") except Exception as e: # If themeTags column doesn't exist, return empty print(f" Failed to read themeTags column: {e}") return counts # Convert to list for fast iteration (faster than iterrows) theme_tags_list = df["themeTags"].tolist() # Debug: check first few entries non_empty_count = 0 for i, raw_value in enumerate(theme_tags_list[:10]): if raw_value is not None and not (isinstance(raw_value, float) and pd.isna(raw_value)): non_empty_count += 1 if i < 3: # Show first 3 non-empty print(f" Sample tag {i}: {raw_value!r} (type: {type(raw_value).__name__})") if non_empty_count == 0: print(" WARNING: No non-empty themeTags found in first 10 rows") for raw_value in theme_tags_list: if raw_value is None or (isinstance(raw_value, float) and pd.isna(raw_value)): continue tags = parse_theme_tags(raw_value) if not tags: continue seen_in_row: set[str] = set() for tag in tags: display = normalize_theme_display(tag) if not display: continue key = canonical_key(display) if key in seen_in_row: continue seen_in_row.add(key) counts[key] += 1 theme_variants[key].add(display) print(f" Found {len(counts)} unique themes from parquet") return counts # CSV fallback removed in M4 migration - Parquet is now required def _select_display_name(options: Sequence[str]) -> str: if not options: return "" def ranking(value: str) -> tuple[int, int, str, str]: all_upper = int(value == value.upper()) title_case = int(value != value.title()) return (all_upper, title_case, value.casefold(), value) return min(options, key=ranking) def _derive_generated_at(now: Optional[datetime] = None) -> str: current = now or datetime.now(timezone.utc) without_microseconds = current.replace(microsecond=0) iso = without_microseconds.isoformat() return iso.replace("+00:00", "Z") def _compute_version_hash(theme_names: Iterable[str]) -> str: joined = "\n".join(sorted(theme_names)).encode("utf-8") return hashlib.sha256(joined).hexdigest()[:12] def build_theme_catalog( csv_directory: Path, output_path: Path, *, generated_at: Optional[datetime] = None, logs_directory: Optional[Path] = None, min_card_count: int = 3, ) -> CatalogBuildResult: """Build theme catalog from Parquet card data. Args: csv_directory: Base directory (used to locate card_files/processed/all_cards.parquet) output_path: Where to write the catalog CSV generated_at: Optional timestamp for generation logs_directory: Optional directory to copy output to min_card_count: Minimum number of cards required to include theme (default: 3) Returns: CatalogBuildResult with generated rows and metadata Raises: RuntimeError: If pandas/pyarrow not available FileNotFoundError: If all_cards.parquet doesn't exist RuntimeError: If no theme tags found in Parquet file """ csv_directory = csv_directory.resolve() output_path = output_path.resolve() theme_variants: Dict[str, set[str]] = defaultdict(set) # Parquet-only mode (M4 migration: CSV files removed) if not HAS_PARQUET_SUPPORT: raise RuntimeError( "Pandas is required for theme catalog generation. " "Install with: pip install pandas pyarrow" ) # Use processed parquet files (M4 migration) parquet_dir = csv_directory.parent / "card_files" / "processed" all_cards_parquet = parquet_dir / "all_cards.parquet" print(f"Loading theme data from parquet: {all_cards_parquet}") print(f" File exists: {all_cards_parquet.exists()}") if not all_cards_parquet.exists(): raise FileNotFoundError( f"Required Parquet file not found: {all_cards_parquet}\n" f"Run tagging first: python -c \"from code.tagging.tagger import run_tagging; run_tagging()\"" ) # Load all card counts from all_cards.parquet (includes commanders) card_counts = _load_theme_counts_from_parquet( all_cards_parquet, theme_variants=theme_variants ) # For commander counts, filter all_cards by isCommander column df_commanders = pd.read_parquet(all_cards_parquet) if 'isCommander' in df_commanders.columns: df_commanders = df_commanders[df_commanders['isCommander']] else: # Fallback: assume all cards could be commanders if column missing pass commander_counts = Counter() for tags in df_commanders['themeTags'].tolist(): if tags is None or (isinstance(tags, float) and pd.isna(tags)): continue # Functions are defined at top of this file, no import needed parsed = parse_theme_tags(tags) if not parsed: continue seen = set() for tag in parsed: display = normalize_theme_display(tag) if not display: continue key = canonical_key(display) if key not in seen: seen.add(key) commander_counts[key] += 1 theme_variants[key].add(display) # Verify we found theme tags total_themes_found = len(card_counts) + len(commander_counts) if total_themes_found == 0: raise RuntimeError( f"No theme tags found in {all_cards_parquet}\n" f"The Parquet file exists but contains no themeTags data. " f"This usually means tagging hasn't completed or failed.\n" f"Check that 'themeTags' column exists and is populated." ) print("✓ Loaded theme data from parquet files") print(f" - Commanders: {len(commander_counts)} themes") print(f" - All cards: {len(card_counts)} themes") keys = sorted(set(card_counts.keys()) | set(commander_counts.keys())) generated_at_iso = _derive_generated_at(generated_at) display_names = [_select_display_name(sorted(theme_variants[key])) for key in keys] version_hash = _compute_version_hash(display_names) rows: List[CatalogRow] = [] filtered_count = 0 for key, display in zip(keys, display_names): if not display: continue card_count = int(card_counts.get(key, 0)) commander_count = int(commander_counts.get(key, 0)) source_count = card_count + commander_count # Filter out themes below minimum threshold if source_count < min_card_count: filtered_count += 1 continue rows.append( CatalogRow( theme=display, source_count=source_count, commander_count=commander_count, card_count=card_count, last_generated_at=generated_at_iso, version=version_hash, ) ) rows.sort(key=lambda row: (row.theme.casefold(), row.theme)) output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open("w", encoding="utf-8", newline="") as handle: comment = ( f"{HEADER_COMMENT_PREFIX} version={version_hash} " f"generated_at={generated_at_iso} total_themes={len(rows)}\n" ) handle.write(comment) writer = csv.writer(handle) writer.writerow([ "theme", "source_count", "commander_count", "card_count", "last_generated_at", "version", ]) for row in rows: writer.writerow([ row.theme, row.source_count, row.commander_count, row.card_count, row.last_generated_at, row.version, ]) if filtered_count > 0: print(f" Filtered {filtered_count} themes with <{min_card_count} cards") if logs_directory is not None: logs_directory = logs_directory.resolve() logs_directory.mkdir(parents=True, exist_ok=True) copy_path = logs_directory / output_path.name shutil.copyfile(output_path, copy_path) if not rows: raise RuntimeError( "No theme tags found while generating theme catalog; ensure card CSVs contain a themeTags column." ) return CatalogBuildResult(rows=rows, generated_at=generated_at_iso, version=version_hash, output_path=output_path) def _resolve_csv_directory(value: Optional[str]) -> Path: if value: return Path(value) env_override = os.environ.get("CSV_FILES_DIR") if env_override: return Path(env_override) return ROOT / DEFAULT_CSV_DIRECTORY def main(argv: Optional[Sequence[str]] = None) -> CatalogBuildResult: parser = argparse.ArgumentParser(description="Generate a normalized theme catalog CSV.") parser.add_argument( "--csv-dir", dest="csv_dir", type=Path, default=None, help="Directory containing card CSV files (defaults to CSV_FILES_DIR or settings.CSV_DIRECTORY)", ) parser.add_argument( "--output", dest="output", type=Path, default=DEFAULT_OUTPUT_PATH, help="Destination CSV path (defaults to config/themes/theme_catalog.csv)", ) parser.add_argument( "--logs-dir", dest="logs_dir", type=Path, default=None, help="Optional directory to mirror the generated catalog for diffing (e.g., logs/generated)", ) parser.add_argument( "--min-cards", dest="min_cards", type=int, default=3, help="Minimum number of cards required to include theme (default: 3)", ) args = parser.parse_args(argv) csv_dir = _resolve_csv_directory(str(args.csv_dir) if args.csv_dir else None) result = build_theme_catalog( csv_directory=csv_dir, output_path=args.output, logs_directory=args.logs_dir, min_card_count=args.min_cards, ) print( f"Generated {len(result.rows)} themes -> {result.output_path} (version={result.version})", file=sys.stderr, ) return result if __name__ == "__main__": # pragma: no cover - CLI entrypoint main()