feat: consolidate card data into optimized format for faster queries and reduced file sizes

This commit is contained in:
matt 2025-10-15 11:04:49 -07:00
parent 5753bb19f8
commit f70ffca23e
24 changed files with 2903 additions and 135 deletions

View file

@ -1330,6 +1330,51 @@ def _ensure_setup_ready(out, force: bool = False) -> None:
os.makedirs('csv_files', exist_ok=True)
with open(flag_path, 'w', encoding='utf-8') as _fh:
json.dump({'tagged_at': _dt.now().isoformat(timespec='seconds')}, _fh)
# Aggregate card files into Parquet AFTER tagging completes
try:
_write_status({"running": True, "phase": "aggregating", "message": "Consolidating card data...", "percent": 90})
out("Aggregating card CSVs into Parquet files...")
from file_setup.card_aggregator import CardAggregator # type: ignore
aggregator = CardAggregator()
# Aggregate all_cards.parquet
stats = aggregator.aggregate_all('csv_files', 'card_files/all_cards.parquet')
out(f"Aggregated {stats['total_cards']} cards into all_cards.parquet ({stats['file_size_mb']} MB)")
# Convert commander_cards.csv and background_cards.csv to Parquet
import pandas as pd # type: ignore
# Convert commander_cards.csv
commander_csv = 'csv_files/commander_cards.csv'
commander_parquet = 'card_files/commander_cards.parquet'
if os.path.exists(commander_csv):
df_cmd = pd.read_csv(commander_csv, comment='#', low_memory=False)
# Convert mixed-type columns to strings for Parquet compatibility
for col in ["power", "toughness", "keywords"]:
if col in df_cmd.columns:
df_cmd[col] = df_cmd[col].astype(str)
df_cmd.to_parquet(commander_parquet, engine="pyarrow", compression="snappy", index=False)
out(f"Converted commander_cards.csv to Parquet ({len(df_cmd)} commanders)")
# Convert background_cards.csv
background_csv = 'csv_files/background_cards.csv'
background_parquet = 'card_files/background_cards.parquet'
if os.path.exists(background_csv):
df_bg = pd.read_csv(background_csv, comment='#', low_memory=False)
# Convert mixed-type columns to strings for Parquet compatibility
for col in ["power", "toughness", "keywords"]:
if col in df_bg.columns:
df_bg[col] = df_bg[col].astype(str)
df_bg.to_parquet(background_parquet, engine="pyarrow", compression="snappy", index=False)
out(f"Converted background_cards.csv to Parquet ({len(df_bg)} backgrounds)")
_write_status({"running": True, "phase": "aggregating", "message": "Card aggregation complete", "percent": 95})
except Exception as e:
# Non-fatal: aggregation failure shouldn't block the rest of setup
out(f"Warning: Card aggregation failed: {e}")
_write_status({"running": True, "phase": "aggregating", "message": f"Aggregation failed (non-fatal): {e}", "percent": 95})
# Final status with percent 100 and timing info
finished_dt = _dt.now()
finished = finished_dt.isoformat(timespec='seconds')