mirror of
https://github.com/mwisnowski/mtg_python_deckbuilder.git
synced 2025-12-16 23:50:12 +01:00
Add card browser with similar cards and performance optimizations
This commit is contained in:
parent
a8dc1835eb
commit
c2960c808e
25 changed files with 4841 additions and 1392 deletions
445
code/scripts/build_similarity_cache_parquet.py
Normal file
445
code/scripts/build_similarity_cache_parquet.py
Normal file
|
|
@ -0,0 +1,445 @@
|
|||
"""
|
||||
Build similarity cache for all cards in the database using Parquet format.
|
||||
|
||||
Pre-computes and stores similarity calculations for ~29k cards to improve
|
||||
card detail page performance from 2-6s down to <500ms.
|
||||
|
||||
NOTE: This script assumes card data and tagging are already complete.
|
||||
Run setup and tagging separately before building the cache.
|
||||
|
||||
Usage:
|
||||
python -m code.scripts.build_similarity_cache_parquet [--parallel] [--checkpoint-interval 100]
|
||||
|
||||
Options:
|
||||
--parallel Enable parallel processing (faster but uses more CPU)
|
||||
--checkpoint-interval Save cache every N cards (default: 100)
|
||||
--force Rebuild cache even if it exists
|
||||
--dry-run Calculate without saving (for testing)
|
||||
--workers N Number of parallel workers (default: auto-detect)
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
import pandas as pd
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
# Add project root to path
|
||||
project_root = Path(__file__).parents[2]
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from code.web.services.card_similarity import CardSimilarity
|
||||
from code.web.services.similarity_cache import SimilarityCache, get_cache
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Shared data for worker processes (passed during initialization, not reloaded per worker)
|
||||
_shared_cards_df = None
|
||||
_shared_theme_frequencies = None
|
||||
_shared_cleaned_tags = None
|
||||
_worker_similarity = None
|
||||
|
||||
|
||||
def _init_worker(cards_df_pickled: bytes, theme_frequencies: dict, cleaned_tags: dict):
|
||||
"""
|
||||
Initialize worker process with shared data.
|
||||
Called once when each worker process starts.
|
||||
|
||||
Args:
|
||||
cards_df_pickled: Pickled DataFrame of all cards
|
||||
theme_frequencies: Pre-computed theme frequency dict
|
||||
cleaned_tags: Pre-computed cleaned tags cache
|
||||
"""
|
||||
import pickle
|
||||
import logging
|
||||
|
||||
global _shared_cards_df, _shared_theme_frequencies, _shared_cleaned_tags, _worker_similarity
|
||||
|
||||
# Unpickle shared data once per worker
|
||||
_shared_cards_df = pickle.loads(cards_df_pickled)
|
||||
_shared_theme_frequencies = theme_frequencies
|
||||
_shared_cleaned_tags = cleaned_tags
|
||||
|
||||
# Create worker-level CardSimilarity instance with shared data
|
||||
_worker_similarity = CardSimilarity(cards_df=_shared_cards_df)
|
||||
|
||||
# Override pre-computed data to avoid recomputation
|
||||
_worker_similarity.theme_frequencies = _shared_theme_frequencies
|
||||
_worker_similarity.cleaned_tags_cache = _shared_cleaned_tags
|
||||
|
||||
# Suppress verbose logging in workers
|
||||
logging.getLogger("card_similarity").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def calculate_similarity_for_card(args: tuple) -> tuple[str, list[dict], bool]:
|
||||
"""
|
||||
Calculate similarity for a single card (worker function for parallel processing).
|
||||
|
||||
Args:
|
||||
args: Tuple of (card_name, threshold, min_results, limit)
|
||||
|
||||
Returns:
|
||||
Tuple of (card_name, similar_cards, success)
|
||||
"""
|
||||
card_name, threshold, min_results, limit = args
|
||||
|
||||
try:
|
||||
# Use the global worker-level CardSimilarity instance
|
||||
global _worker_similarity
|
||||
if _worker_similarity is None:
|
||||
# Fallback if initializer wasn't called (shouldn't happen)
|
||||
_worker_similarity = CardSimilarity()
|
||||
|
||||
# Calculate without using cache (we're building it)
|
||||
similar_cards = _worker_similarity.find_similar(
|
||||
card_name=card_name,
|
||||
threshold=threshold,
|
||||
min_results=min_results,
|
||||
limit=limit,
|
||||
adaptive=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
return card_name, similar_cards, True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to calculate similarity for '{card_name}': {e}")
|
||||
return card_name, [], False
|
||||
|
||||
|
||||
def _add_results_to_cache(cache_df: pd.DataFrame, card_name: str, similar_cards: list[dict]) -> pd.DataFrame:
|
||||
"""
|
||||
Add similarity results for a card to the cache DataFrame.
|
||||
|
||||
Args:
|
||||
cache_df: Existing cache DataFrame
|
||||
card_name: Name of the card
|
||||
similar_cards: List of similar cards with scores
|
||||
|
||||
Returns:
|
||||
Updated DataFrame
|
||||
"""
|
||||
# Build new rows
|
||||
new_rows = []
|
||||
for rank, card in enumerate(similar_cards):
|
||||
new_rows.append({
|
||||
"card_name": card_name,
|
||||
"similar_name": card["name"],
|
||||
"similarity": card["similarity"],
|
||||
"edhrecRank": card.get("edhrecRank", float("inf")),
|
||||
"rank": rank,
|
||||
})
|
||||
|
||||
if new_rows:
|
||||
new_df = pd.DataFrame(new_rows)
|
||||
cache_df = pd.concat([cache_df, new_df], ignore_index=True)
|
||||
|
||||
return cache_df
|
||||
|
||||
|
||||
def build_cache(
|
||||
parallel: bool = False,
|
||||
workers: int | None = None,
|
||||
checkpoint_interval: int = 100,
|
||||
force: bool = False,
|
||||
dry_run: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Build similarity cache for all cards.
|
||||
|
||||
NOTE: Assumes card data (cards.csv, all_cards.parquet) and tagged data already exist.
|
||||
Run setup and tagging separately before building cache.
|
||||
|
||||
Args:
|
||||
parallel: Enable parallel processing
|
||||
workers: Number of parallel workers (None = auto-detect)
|
||||
checkpoint_interval: Save cache every N cards
|
||||
force: Rebuild even if cache exists
|
||||
dry_run: Calculate without saving
|
||||
"""
|
||||
logger.info("=" * 80)
|
||||
logger.info("Similarity Cache Builder (Parquet Edition)")
|
||||
logger.info("=" * 80)
|
||||
logger.info("")
|
||||
|
||||
# Initialize cache
|
||||
cache = get_cache()
|
||||
|
||||
# Quick check for complete cache - if metadata says build is done, exit
|
||||
if not force and cache.cache_path.exists() and not dry_run:
|
||||
metadata = cache._metadata or {}
|
||||
is_complete = metadata.get("build_complete", False)
|
||||
|
||||
if is_complete:
|
||||
stats = cache.get_stats()
|
||||
logger.info(f"Cache already complete with {stats['total_cards']:,} cards")
|
||||
logger.info("Use --force to rebuild")
|
||||
return
|
||||
else:
|
||||
stats = cache.get_stats()
|
||||
logger.info(f"Resuming incomplete cache with {stats['total_cards']:,} cards")
|
||||
|
||||
if dry_run:
|
||||
logger.info("DRY RUN MODE - No changes will be saved")
|
||||
logger.info("")
|
||||
|
||||
# Initialize similarity engine
|
||||
logger.info("Initializing similarity engine...")
|
||||
similarity = CardSimilarity()
|
||||
total_cards = len(similarity.cards_df)
|
||||
logger.info(f"Loaded {total_cards:,} cards")
|
||||
logger.info("")
|
||||
|
||||
# Filter out low-value lands (single-sided with <3 tags)
|
||||
df = similarity.cards_df
|
||||
df["is_land"] = df["type"].str.contains("Land", case=False, na=False)
|
||||
df["is_multifaced"] = df["layout"].str.lower().isin(["modal_dfc", "transform", "reversible_card", "double_faced_token"])
|
||||
df["tag_count"] = df["themeTags"].apply(lambda x: len(x.split("|")) if pd.notna(x) and x else 0)
|
||||
|
||||
# Keep cards that are either:
|
||||
# 1. Not lands, OR
|
||||
# 2. Multi-faced lands, OR
|
||||
# 3. Single-sided lands with >= 3 tags
|
||||
keep_mask = (~df["is_land"]) | (df["is_multifaced"]) | (df["is_land"] & (df["tag_count"] >= 3))
|
||||
|
||||
card_names = df[keep_mask]["name"].tolist()
|
||||
skipped_lands = (~keep_mask & df["is_land"]).sum()
|
||||
|
||||
logger.info(f"Filtered out {skipped_lands} low-value lands (single-sided with <3 tags)")
|
||||
logger.info(f"Processing {len(card_names):,} cards ({len(card_names)/total_cards*100:.1f}% of total)")
|
||||
logger.info("")
|
||||
|
||||
# Configuration for similarity calculation
|
||||
threshold = 0.8
|
||||
min_results = 3
|
||||
limit = 20 # Cache up to 20 similar cards per card for variety
|
||||
|
||||
# Initialize cache data structure - try to load existing for resume
|
||||
existing_cache_df = cache.load_cache()
|
||||
already_processed = set()
|
||||
|
||||
if len(existing_cache_df) > 0 and not dry_run:
|
||||
# Resume from checkpoint - keep existing data
|
||||
cache_df = existing_cache_df
|
||||
already_processed = set(existing_cache_df["card_name"].unique())
|
||||
logger.info(f"Resuming from checkpoint with {len(already_processed):,} cards already processed")
|
||||
|
||||
# Setup metadata
|
||||
metadata = cache._metadata or cache._empty_metadata()
|
||||
else:
|
||||
# Start fresh
|
||||
cache_df = cache._empty_cache_df()
|
||||
metadata = cache._empty_metadata()
|
||||
metadata["build_date"] = datetime.now().isoformat()
|
||||
metadata["threshold"] = threshold
|
||||
metadata["min_results"] = min_results
|
||||
|
||||
# Track stats
|
||||
start_time = time.time()
|
||||
processed = len(already_processed) # Start count from checkpoint
|
||||
failed = 0
|
||||
checkpoint_count = 0
|
||||
|
||||
try:
|
||||
if parallel:
|
||||
# Parallel processing - use available CPU cores
|
||||
import os
|
||||
import pickle
|
||||
|
||||
if workers is not None:
|
||||
max_workers = max(1, workers) # User-specified, minimum 1
|
||||
logger.info(f"Using {max_workers} worker processes (user-specified)")
|
||||
else:
|
||||
cpu_count = os.cpu_count() or 4
|
||||
# Use CPU count - 1 to leave one core for system, minimum 4
|
||||
max_workers = max(4, cpu_count - 1)
|
||||
logger.info(f"Detected {cpu_count} CPUs, using {max_workers} worker processes")
|
||||
|
||||
# Prepare shared data (pickle DataFrame once, share with all workers)
|
||||
logger.info("Preparing shared data for workers...")
|
||||
cards_df_pickled = pickle.dumps(similarity.cards_df)
|
||||
theme_frequencies = similarity.theme_frequencies.copy()
|
||||
cleaned_tags = similarity.cleaned_tags_cache.copy()
|
||||
logger.info(f"Shared data prepared: {len(cards_df_pickled):,} bytes (DataFrame), "
|
||||
f"{len(theme_frequencies)} themes, {len(cleaned_tags)} cleaned tag sets")
|
||||
|
||||
# Prepare arguments for cards not yet processed
|
||||
cards_to_process = [name for name in card_names if name not in already_processed]
|
||||
logger.info(f"Cards to process: {len(cards_to_process):,} (skipping {len(already_processed):,} already done)")
|
||||
|
||||
card_args = [(name, threshold, min_results, limit) for name in cards_to_process]
|
||||
|
||||
with ProcessPoolExecutor(
|
||||
max_workers=max_workers,
|
||||
initializer=_init_worker,
|
||||
initargs=(cards_df_pickled, theme_frequencies, cleaned_tags)
|
||||
) as executor:
|
||||
# Submit all tasks
|
||||
future_to_card = {
|
||||
executor.submit(calculate_similarity_for_card, args): args[0]
|
||||
for args in card_args
|
||||
}
|
||||
|
||||
# Process results as they complete
|
||||
for future in as_completed(future_to_card):
|
||||
card_name, similar_cards, success = future.result()
|
||||
|
||||
if success:
|
||||
cache_df = _add_results_to_cache(cache_df, card_name, similar_cards)
|
||||
processed += 1
|
||||
else:
|
||||
failed += 1
|
||||
|
||||
# Progress reporting
|
||||
total_to_process = len(card_names)
|
||||
if processed % 100 == 0:
|
||||
elapsed = time.time() - start_time
|
||||
# Calculate rate based on cards processed THIS session
|
||||
cards_this_session = processed - len(already_processed)
|
||||
rate = cards_this_session / elapsed if elapsed > 0 else 0
|
||||
cards_remaining = total_to_process - processed
|
||||
eta = cards_remaining / rate if rate > 0 else 0
|
||||
logger.info(
|
||||
f"Progress: {processed}/{total_to_process} "
|
||||
f"({processed/total_to_process*100:.1f}%) - "
|
||||
f"Rate: {rate:.1f} cards/sec - "
|
||||
f"ETA: {eta/60:.1f} min"
|
||||
)
|
||||
|
||||
# Checkpoint save
|
||||
if not dry_run and processed % checkpoint_interval == 0:
|
||||
checkpoint_count += 1
|
||||
cache.save_cache(cache_df, metadata)
|
||||
logger.info(f"Checkpoint {checkpoint_count}: Saved cache with {processed:,} cards")
|
||||
|
||||
else:
|
||||
# Serial processing - skip already processed cards
|
||||
cards_to_process = [name for name in card_names if name not in already_processed]
|
||||
logger.info(f"Cards to process: {len(cards_to_process):,} (skipping {len(already_processed):,} already done)")
|
||||
|
||||
for i, card_name in enumerate(cards_to_process, start=1):
|
||||
try:
|
||||
similar_cards = similarity.find_similar(
|
||||
card_name=card_name,
|
||||
threshold=threshold,
|
||||
min_results=min_results,
|
||||
limit=limit,
|
||||
adaptive=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
cache_df = _add_results_to_cache(cache_df, card_name, similar_cards)
|
||||
processed += 1
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process '{card_name}': {e}")
|
||||
failed += 1
|
||||
|
||||
# Progress reporting
|
||||
if i % 100 == 0:
|
||||
elapsed = time.time() - start_time
|
||||
rate = i / elapsed if elapsed > 0 else 0
|
||||
cards_remaining = len(card_names) - i
|
||||
eta = cards_remaining / rate if rate > 0 else 0
|
||||
logger.info(
|
||||
f"Progress: {i}/{len(card_names)} "
|
||||
f"({i/len(card_names)*100:.1f}%) - "
|
||||
f"Rate: {rate:.1f} cards/sec - "
|
||||
f"ETA: {eta/60:.1f} min"
|
||||
)
|
||||
|
||||
# Checkpoint save
|
||||
if not dry_run and i % checkpoint_interval == 0:
|
||||
checkpoint_count += 1
|
||||
cache.save_cache(cache_df, metadata)
|
||||
logger.info(f"Checkpoint {checkpoint_count}: Saved cache with {i:,} cards")
|
||||
|
||||
# Final save
|
||||
if not dry_run:
|
||||
metadata["last_updated"] = datetime.now().isoformat()
|
||||
metadata["build_complete"] = True
|
||||
cache.save_cache(cache_df, metadata)
|
||||
|
||||
# Summary
|
||||
elapsed = time.time() - start_time
|
||||
logger.info("")
|
||||
logger.info("=" * 80)
|
||||
logger.info("Build Complete")
|
||||
logger.info("=" * 80)
|
||||
logger.info(f"Total time: {elapsed/60:.2f} minutes")
|
||||
logger.info(f"Cards processed: {processed:,}")
|
||||
logger.info(f"Failed: {failed}")
|
||||
logger.info(f"Checkpoints saved: {checkpoint_count}")
|
||||
|
||||
if processed > 0:
|
||||
logger.info(f"Average rate: {processed/elapsed:.2f} cards/sec")
|
||||
|
||||
if not dry_run:
|
||||
stats = cache.get_stats()
|
||||
logger.info(f"Cache file size: {stats.get('file_size_mb', 0):.2f} MB")
|
||||
logger.info(f"Cache location: {cache.cache_path}")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.warning("\nBuild interrupted by user")
|
||||
|
||||
# Save partial cache
|
||||
if not dry_run and len(cache_df) > 0:
|
||||
metadata["last_updated"] = datetime.now().isoformat()
|
||||
cache.save_cache(cache_df, metadata)
|
||||
logger.info(f"Saved partial cache with {processed:,} cards")
|
||||
|
||||
|
||||
def main():
|
||||
"""CLI entry point."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Build similarity cache for all cards (Parquet format)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--parallel",
|
||||
action="store_true",
|
||||
help="Enable parallel processing",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Number of parallel workers (default: auto-detect)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--checkpoint-interval",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Save cache every N cards (default: 100)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force",
|
||||
action="store_true",
|
||||
help="Rebuild cache even if it exists",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
action="store_true",
|
||||
help="Calculate without saving (for testing)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
build_cache(
|
||||
parallel=args.parallel,
|
||||
workers=args.workers,
|
||||
checkpoint_interval=args.checkpoint_interval,
|
||||
force=args.force,
|
||||
dry_run=args.dry_run,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -124,4 +124,25 @@ TAG_PROTECTION_GRANTS = os.getenv('TAG_PROTECTION_GRANTS', '1').lower() not in (
|
|||
TAG_METADATA_SPLIT = os.getenv('TAG_METADATA_SPLIT', '1').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
|
||||
# M5: Enable protection scope filtering in deck builder (completed - Phase 1-3, in progress Phase 4+)
|
||||
TAG_PROTECTION_SCOPE = os.getenv('TAG_PROTECTION_SCOPE', '1').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
TAG_PROTECTION_SCOPE = os.getenv('TAG_PROTECTION_SCOPE', '1').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
|
||||
# ----------------------------------------------------------------------------------
|
||||
# CARD BROWSER FEATURE FLAGS
|
||||
# ----------------------------------------------------------------------------------
|
||||
|
||||
# Enable card detail pages (default: OFF)
|
||||
# Set to '1' or 'true' to enable card detail pages in card browser
|
||||
ENABLE_CARD_DETAILS = os.getenv('ENABLE_CARD_DETAILS', '0').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
|
||||
# Enable similarity/synergy features (default: OFF)
|
||||
# Requires ENABLE_CARD_DETAILS=1 and manual cache build via Setup/Tag page
|
||||
# Shows similar cards based on theme tag overlap using containment scoring
|
||||
ENABLE_CARD_SIMILARITIES = os.getenv('ENABLE_CARD_SIMILARITIES', '0').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
|
||||
# Similarity cache configuration
|
||||
SIMILARITY_CACHE_PATH = os.getenv('SIMILARITY_CACHE_PATH', 'card_files/similarity_cache.json')
|
||||
SIMILARITY_CACHE_MAX_AGE_DAYS = int(os.getenv('SIMILARITY_CACHE_MAX_AGE_DAYS', '7'))
|
||||
|
||||
# Allow downloading pre-built cache from GitHub (saves 15-20 min build time)
|
||||
# Set to '0' to always build locally (useful for custom seeds or offline environments)
|
||||
SIMILARITY_CACHE_DOWNLOAD = os.getenv('SIMILARITY_CACHE_DOWNLOAD', '1').lower() not in ('0', 'false', 'off', 'disabled')
|
||||
|
|
@ -69,6 +69,14 @@ async def _lifespan(app: FastAPI): # pragma: no cover - simple infra glue
|
|||
get_theme_index() # Slower: parses cards for theme-to-card mapping
|
||||
except Exception:
|
||||
pass
|
||||
# Warm CardSimilarity singleton (if card details enabled) - runs after theme index loads cards
|
||||
try:
|
||||
from code.settings import ENABLE_CARD_DETAILS
|
||||
if ENABLE_CARD_DETAILS:
|
||||
from .routes.card_browser import get_similarity # type: ignore
|
||||
get_similarity() # Pre-initialize singleton (one-time cost: ~2-3s)
|
||||
except Exception:
|
||||
pass
|
||||
yield # (no shutdown tasks currently)
|
||||
|
||||
|
||||
|
|
@ -2202,6 +2210,7 @@ async def setup_status():
|
|||
except Exception:
|
||||
return JSONResponse({"running": False, "phase": "error"})
|
||||
|
||||
|
||||
# Routers
|
||||
from .routes import build as build_routes # noqa: E402
|
||||
from .routes import configs as config_routes # noqa: E402
|
||||
|
|
@ -2233,6 +2242,8 @@ except Exception:
|
|||
pass
|
||||
|
||||
## (Additional startup warmers consolidated into lifespan handler)
|
||||
## Note: CardSimilarity uses lazy initialization pattern like AllCardsLoader
|
||||
## First card detail page loads in ~200ms (singleton init), subsequent in ~60ms
|
||||
|
||||
# --- Exception handling ---
|
||||
def _wants_html(request: Request) -> bool:
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ from __future__ import annotations
|
|||
|
||||
import logging
|
||||
from difflib import SequenceMatcher
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import pandas as pd
|
||||
from fastapi import APIRouter, Request, Query
|
||||
|
|
@ -19,9 +20,14 @@ from ..app import templates
|
|||
try:
|
||||
from code.services.all_cards_loader import AllCardsLoader
|
||||
from code.deck_builder.builder_utils import parse_theme_tags
|
||||
from code.settings import ENABLE_CARD_DETAILS
|
||||
except ImportError:
|
||||
from services.all_cards_loader import AllCardsLoader
|
||||
from deck_builder.builder_utils import parse_theme_tags
|
||||
from settings import ENABLE_CARD_DETAILS
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from code.web.services.card_similarity import CardSimilarity
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -31,6 +37,7 @@ router = APIRouter(prefix="/cards", tags=["card-browser"])
|
|||
_loader: AllCardsLoader | None = None
|
||||
_theme_index: dict[str, set[int]] | None = None # theme_lower -> set of card indices
|
||||
_theme_catalog: list[str] | None = None # cached list of all theme names from catalog
|
||||
_similarity: "CardSimilarity | None" = None # cached CardSimilarity instance
|
||||
|
||||
|
||||
def get_loader() -> AllCardsLoader:
|
||||
|
|
@ -41,6 +48,28 @@ def get_loader() -> AllCardsLoader:
|
|||
return _loader
|
||||
|
||||
|
||||
def get_similarity() -> "CardSimilarity":
|
||||
"""
|
||||
Get cached CardSimilarity instance.
|
||||
|
||||
CardSimilarity initialization is expensive (pre-computes tags for 29k cards,
|
||||
loads cache with 277k entries). Cache it globally to avoid re-initialization
|
||||
on every card detail page load.
|
||||
|
||||
Returns:
|
||||
Cached CardSimilarity instance
|
||||
"""
|
||||
global _similarity
|
||||
if _similarity is None:
|
||||
from code.web.services.card_similarity import CardSimilarity
|
||||
loader = get_loader()
|
||||
df = loader.load()
|
||||
logger.info("Initializing CardSimilarity singleton (one-time cost)...")
|
||||
_similarity = CardSimilarity(df)
|
||||
logger.info("CardSimilarity singleton ready")
|
||||
return _similarity
|
||||
|
||||
|
||||
def get_theme_catalog() -> list[str]:
|
||||
"""
|
||||
Get cached list of all theme names from theme_catalog.csv.
|
||||
|
|
@ -497,6 +526,7 @@ async def card_browser_index(
|
|||
"per_page": per_page,
|
||||
"current_page": current_page,
|
||||
"total_pages": total_pages,
|
||||
"enable_card_details": ENABLE_CARD_DETAILS,
|
||||
},
|
||||
)
|
||||
|
||||
|
|
@ -519,6 +549,7 @@ async def card_browser_index(
|
|||
"all_rarities": [],
|
||||
"per_page": 20,
|
||||
"error": "Card data not available. Please run setup to generate all_cards.parquet.",
|
||||
"enable_card_details": ENABLE_CARD_DETAILS,
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
|
|
@ -540,6 +571,7 @@ async def card_browser_index(
|
|||
"all_rarities": [],
|
||||
"per_page": 20,
|
||||
"error": f"Error loading cards: {str(e)}",
|
||||
"enable_card_details": ENABLE_CARD_DETAILS,
|
||||
},
|
||||
)
|
||||
|
||||
|
|
@ -757,8 +789,19 @@ async def card_browser_grid(
|
|||
filtered_df = filtered_df.drop('_sort_key', axis=1)
|
||||
|
||||
# Cursor-based pagination
|
||||
# Cursor is the card name - skip all cards until we find it, then take next batch
|
||||
if cursor:
|
||||
filtered_df = filtered_df[filtered_df['name'] > cursor]
|
||||
try:
|
||||
# Find the position of the cursor card in the sorted dataframe
|
||||
cursor_position = filtered_df[filtered_df['name'] == cursor].index
|
||||
if len(cursor_position) > 0:
|
||||
# Get the iloc position (row number, not index label)
|
||||
cursor_iloc = filtered_df.index.get_loc(cursor_position[0])
|
||||
# Skip past the cursor card (take everything after it)
|
||||
filtered_df = filtered_df.iloc[cursor_iloc + 1:]
|
||||
except (KeyError, IndexError):
|
||||
# Cursor card not found - might have been filtered out, just proceed
|
||||
pass
|
||||
|
||||
per_page = 20
|
||||
cards_page = filtered_df.head(per_page)
|
||||
|
|
@ -815,6 +858,7 @@ async def card_browser_grid(
|
|||
"power_max": power_max,
|
||||
"tough_min": tough_min,
|
||||
"tough_max": tough_max,
|
||||
"enable_card_details": ENABLE_CARD_DETAILS,
|
||||
},
|
||||
)
|
||||
|
||||
|
|
@ -1120,3 +1164,110 @@ async def card_theme_autocomplete(
|
|||
logger.error(f"Error in theme autocomplete: {e}", exc_info=True)
|
||||
return HTMLResponse(content=f'<div class="autocomplete-error">Error: {str(e)}</div>')
|
||||
|
||||
|
||||
@router.get("/{card_name}", response_class=HTMLResponse)
|
||||
async def card_detail(request: Request, card_name: str):
|
||||
"""
|
||||
Display detailed information about a single card with similar cards.
|
||||
|
||||
Args:
|
||||
card_name: URL-encoded card name
|
||||
|
||||
Returns:
|
||||
HTML page with card details and similar cards section
|
||||
"""
|
||||
try:
|
||||
from urllib.parse import unquote
|
||||
|
||||
# Decode URL-encoded card name
|
||||
card_name = unquote(card_name)
|
||||
|
||||
# Load card data
|
||||
loader = get_loader()
|
||||
df = loader.load()
|
||||
|
||||
# Find the card
|
||||
card_row = df[df['name'] == card_name]
|
||||
|
||||
if card_row.empty:
|
||||
# Card not found - return 404 page
|
||||
return templates.TemplateResponse(
|
||||
"error.html",
|
||||
{
|
||||
"request": request,
|
||||
"error_code": 404,
|
||||
"error_message": f"Card not found: {card_name}",
|
||||
"back_link": "/cards",
|
||||
"back_text": "Back to Card Browser"
|
||||
},
|
||||
status_code=404
|
||||
)
|
||||
|
||||
# Get card data as dict
|
||||
card = card_row.iloc[0].to_dict()
|
||||
|
||||
# Parse theme tags using helper function
|
||||
card['themeTags_parsed'] = parse_theme_tags(card.get('themeTags', ''))
|
||||
|
||||
# Calculate similar cards using cached singleton
|
||||
similarity = get_similarity()
|
||||
similar_cards = similarity.find_similar(
|
||||
card_name,
|
||||
threshold=0.8, # Start at 80%
|
||||
limit=5, # Show 3-5 cards
|
||||
min_results=3, # Target minimum 3
|
||||
adaptive=True # Enable adaptive thresholds (80% → 60%)
|
||||
)
|
||||
|
||||
# Enrich similar cards with full data
|
||||
for similar in similar_cards:
|
||||
similar_row = df[df['name'] == similar['name']]
|
||||
if not similar_row.empty:
|
||||
similar_data = similar_row.iloc[0].to_dict()
|
||||
|
||||
# Parse theme tags before updating (so we have the list, not string)
|
||||
theme_tags_parsed = parse_theme_tags(similar_data.get('themeTags', ''))
|
||||
|
||||
similar.update(similar_data)
|
||||
|
||||
# Set the parsed tags list (not the string version from df)
|
||||
similar['themeTags'] = theme_tags_parsed
|
||||
|
||||
# Log card detail page access
|
||||
if similar_cards:
|
||||
threshold_pct = similar_cards[0].get('threshold_used', 0) * 100
|
||||
logger.info(
|
||||
f"Card detail page for '{card_name}': found {len(similar_cards)} similar cards "
|
||||
f"(threshold: {threshold_pct:.0f}%)"
|
||||
)
|
||||
else:
|
||||
logger.info(f"Card detail page for '{card_name}': no similar cards found")
|
||||
|
||||
# Get main card's theme tags for overlap highlighting
|
||||
main_card_tags = card.get('themeTags_parsed', [])
|
||||
|
||||
return templates.TemplateResponse(
|
||||
"browse/cards/detail.html",
|
||||
{
|
||||
"request": request,
|
||||
"card": card,
|
||||
"similar_cards": similar_cards,
|
||||
"main_card_tags": main_card_tags,
|
||||
}
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading card detail for '{card_name}': {e}", exc_info=True)
|
||||
return templates.TemplateResponse(
|
||||
"error.html",
|
||||
{
|
||||
"request": request,
|
||||
"error_code": 500,
|
||||
"error_message": f"Error loading card details: {str(e)}",
|
||||
"back_link": "/cards",
|
||||
"back_text": "Back to Card Browser"
|
||||
},
|
||||
status_code=500
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -157,4 +157,8 @@ async def rebuild_cards():
|
|||
|
||||
@router.get("/", response_class=HTMLResponse)
|
||||
async def setup_index(request: Request) -> HTMLResponse:
|
||||
return templates.TemplateResponse("setup/index.html", {"request": request})
|
||||
import code.settings as settings
|
||||
return templates.TemplateResponse("setup/index.html", {
|
||||
"request": request,
|
||||
"similarity_enabled": settings.ENABLE_CARD_SIMILARITIES
|
||||
})
|
||||
|
|
|
|||
483
code/web/services/card_similarity.py
Normal file
483
code/web/services/card_similarity.py
Normal file
|
|
@ -0,0 +1,483 @@
|
|||
"""
|
||||
Card similarity service using Jaccard index on theme tags.
|
||||
|
||||
Provides similarity scoring between cards based on theme tag overlap.
|
||||
Used for "Similar Cards" feature in card browser.
|
||||
|
||||
Supports persistent caching for improved performance (2-6s → <500ms).
|
||||
|
||||
Uses "signature tags" approach: compares top 5 most frequent tags instead
|
||||
of all tags, significantly improving performance and quality.
|
||||
"""
|
||||
|
||||
import ast
|
||||
import logging
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from code.web.services.similarity_cache import SimilarityCache, get_cache
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CardSimilarity:
|
||||
"""Calculate card similarity using theme tag overlap (Jaccard index) with caching."""
|
||||
|
||||
def __init__(self, cards_df: Optional[pd.DataFrame] = None, cache: Optional[SimilarityCache] = None):
|
||||
"""
|
||||
Initialize similarity calculator.
|
||||
|
||||
Args:
|
||||
cards_df: DataFrame with card data. If None, loads from all_cards.parquet
|
||||
cache: SimilarityCache instance. If None, uses global singleton
|
||||
"""
|
||||
if cards_df is None:
|
||||
# Load from default location
|
||||
parquet_path = Path(__file__).parents[3] / "card_files" / "all_cards.parquet"
|
||||
logger.info(f"Loading cards from {parquet_path}")
|
||||
self.cards_df = pd.read_parquet(parquet_path)
|
||||
else:
|
||||
self.cards_df = cards_df
|
||||
|
||||
# Initialize cache
|
||||
self.cache = cache if cache is not None else get_cache()
|
||||
|
||||
# Load theme frequencies from catalog
|
||||
self.theme_frequencies = self._load_theme_frequencies()
|
||||
|
||||
# Pre-compute cleaned tags (with exclusions) for all cards (one-time cost, huge speedup)
|
||||
# This removes "Historics Matter" and "Legends Matter" from all cards
|
||||
self.cleaned_tags_cache = self._precompute_cleaned_tags()
|
||||
|
||||
# Pre-compute card metadata (EDHREC rank) for fast lookups
|
||||
self._card_metadata = self._precompute_card_metadata()
|
||||
|
||||
# Inverted index (tag -> set of card names) - built lazily on first use
|
||||
self._tag_to_cards_index = None
|
||||
|
||||
logger.info(
|
||||
f"Initialized CardSimilarity with {len(self.cards_df)} cards "
|
||||
f"and {len(self.theme_frequencies)} theme frequencies "
|
||||
f"(cache: {'enabled' if self.cache.enabled else 'disabled'})"
|
||||
)
|
||||
|
||||
def _load_theme_frequencies(self) -> dict[str, int]:
|
||||
"""
|
||||
Load theme frequencies from theme_catalog.csv.
|
||||
|
||||
Returns:
|
||||
Dict mapping theme name to card_count (higher = more common)
|
||||
"""
|
||||
catalog_path = Path(__file__).parents[3] / "config" / "themes" / "theme_catalog.csv"
|
||||
|
||||
try:
|
||||
# Read CSV, skipping comment line
|
||||
df = pd.read_csv(catalog_path, comment="#")
|
||||
|
||||
# Create dict mapping theme -> card_count
|
||||
# Higher card_count = more common/frequent theme
|
||||
frequencies = dict(zip(df["theme"], df["card_count"]))
|
||||
|
||||
logger.info(f"Loaded {len(frequencies)} theme frequencies from catalog")
|
||||
return frequencies
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load theme frequencies: {e}, using empty dict")
|
||||
return {}
|
||||
|
||||
def _precompute_cleaned_tags(self) -> dict[str, set[str]]:
|
||||
"""
|
||||
Pre-compute cleaned tags for all cards.
|
||||
|
||||
Removes overly common tags like "Historics Matter" and "Legends Matter"
|
||||
that don't provide meaningful similarity. This is done once during
|
||||
initialization to avoid recalculating for every comparison.
|
||||
|
||||
Returns:
|
||||
Dict mapping card name -> cleaned tags (full set minus exclusions)
|
||||
"""
|
||||
logger.info("Pre-computing cleaned tags for all cards...")
|
||||
excluded_tags = {"Historics Matter", "Legends Matter"}
|
||||
cleaned = {}
|
||||
|
||||
for _, row in self.cards_df.iterrows():
|
||||
card_name = row["name"]
|
||||
tags = self.parse_theme_tags(row["themeTags"])
|
||||
|
||||
if tags:
|
||||
# Remove excluded tags
|
||||
cleaned_tags = tags - excluded_tags
|
||||
if cleaned_tags: # Only store if card has tags after exclusion
|
||||
cleaned[card_name] = cleaned_tags
|
||||
|
||||
logger.info(f"Pre-computed {len(cleaned)} card tag sets")
|
||||
return cleaned
|
||||
|
||||
def _precompute_card_metadata(self) -> dict[str, dict]:
|
||||
"""
|
||||
Pre-compute card metadata (EDHREC rank, etc.) for fast lookups.
|
||||
|
||||
Returns:
|
||||
Dict mapping card name -> metadata dict
|
||||
"""
|
||||
logger.info("Pre-computing card metadata...")
|
||||
metadata = {}
|
||||
|
||||
for _, row in self.cards_df.iterrows():
|
||||
card_name = row["name"]
|
||||
edhrec_rank = row.get("edhrecRank")
|
||||
# Convert to float, use inf for NaN/None
|
||||
edhrec_rank = float(edhrec_rank) if pd.notna(edhrec_rank) else float('inf')
|
||||
|
||||
metadata[card_name] = {
|
||||
"edhrecRank": edhrec_rank,
|
||||
}
|
||||
|
||||
logger.info(f"Pre-computed metadata for {len(metadata)} cards")
|
||||
return metadata
|
||||
|
||||
def _build_tag_index(self) -> None:
|
||||
"""
|
||||
Build inverted index: tag -> set of card names that have this tag.
|
||||
|
||||
This allows fast candidate filtering - instead of checking all 29k cards,
|
||||
we only check cards that share at least one tag with the target.
|
||||
|
||||
Performance impact: Reduces 29k comparisons to typically 100-2000 comparisons.
|
||||
"""
|
||||
logger.info("Building inverted tag index...")
|
||||
index = {}
|
||||
|
||||
for card_name, tags in self.cleaned_tags_cache.items():
|
||||
for tag in tags:
|
||||
if tag not in index:
|
||||
index[tag] = set()
|
||||
index[tag].add(card_name)
|
||||
|
||||
self._tag_to_cards_index = index
|
||||
|
||||
# Log statistics
|
||||
avg_cards_per_tag = sum(len(cards) for cards in index.values()) / len(index) if index else 0
|
||||
logger.info(
|
||||
f"Built tag index: {len(index)} unique tags, "
|
||||
f"avg {avg_cards_per_tag:.1f} cards per tag"
|
||||
)
|
||||
|
||||
def get_signature_tags(
|
||||
self,
|
||||
card_tags: set[str],
|
||||
top_n: int = 5,
|
||||
random_n: Optional[int] = None,
|
||||
seed: Optional[int] = None,
|
||||
) -> set[str]:
|
||||
"""
|
||||
Get signature tags for similarity comparison.
|
||||
|
||||
Takes the most frequent (popular) tags PLUS random tags for diversity.
|
||||
This balances defining characteristics with discovery of niche synergies.
|
||||
|
||||
Excludes overly common tags like "Historics Matter" and "Legends Matter"
|
||||
that appear on most legendary cards and don't provide meaningful similarity.
|
||||
|
||||
Args:
|
||||
card_tags: Full set of card theme tags
|
||||
top_n: Number of most frequent tags to use (default 5)
|
||||
random_n: Number of random tags to add. If None, auto-scales:
|
||||
- 6-10 tags: 1 random
|
||||
- 11-15 tags: 2 random
|
||||
- 16+ tags: 3 random
|
||||
seed: Random seed for reproducibility (default: None)
|
||||
|
||||
Returns:
|
||||
Set of signature tags (top_n most frequent + random_n random)
|
||||
"""
|
||||
# Exclude overly common tags that don't provide meaningful similarity
|
||||
excluded_tags = {"Historics Matter", "Legends Matter"}
|
||||
card_tags = card_tags - excluded_tags
|
||||
|
||||
if len(card_tags) <= top_n:
|
||||
return card_tags # Use all if card has few tags
|
||||
|
||||
# Auto-scale random_n based on total tag count if not specified
|
||||
if random_n is None:
|
||||
tag_count = len(card_tags)
|
||||
if tag_count >= 16:
|
||||
random_n = 3
|
||||
elif tag_count >= 11:
|
||||
random_n = 2
|
||||
elif tag_count >= 6:
|
||||
random_n = 1
|
||||
else:
|
||||
random_n = 0 # Very few tags, no random needed
|
||||
|
||||
# Sort tags by frequency (higher card_count = more common = higher priority)
|
||||
sorted_tags = sorted(
|
||||
card_tags,
|
||||
key=lambda t: -self.theme_frequencies.get(t, 0), # Negate for descending order
|
||||
)
|
||||
|
||||
# Take top N most frequent tags
|
||||
signature = set(sorted_tags[:top_n])
|
||||
|
||||
# Add random tags from remaining tags
|
||||
remaining_tags = card_tags - signature
|
||||
if remaining_tags and random_n > 0:
|
||||
if seed is not None:
|
||||
random.seed(seed)
|
||||
|
||||
# Sample min(random_n, len(remaining_tags)) to avoid errors
|
||||
sample_size = min(random_n, len(remaining_tags))
|
||||
random_tags = set(random.sample(list(remaining_tags), sample_size))
|
||||
|
||||
signature = signature | random_tags
|
||||
|
||||
return signature
|
||||
|
||||
@staticmethod
|
||||
def parse_theme_tags(tags: str | list) -> set[str]:
|
||||
"""
|
||||
Parse theme tags from string or list format.
|
||||
|
||||
Args:
|
||||
tags: Theme tags as string representation of list or actual list
|
||||
|
||||
Returns:
|
||||
Set of theme tag strings
|
||||
"""
|
||||
if pd.isna(tags) or not tags:
|
||||
return set()
|
||||
|
||||
if isinstance(tags, list):
|
||||
return set(tags)
|
||||
|
||||
if isinstance(tags, str):
|
||||
# Handle string representation of list: "['tag1', 'tag2']"
|
||||
try:
|
||||
parsed = ast.literal_eval(tags)
|
||||
if isinstance(parsed, list):
|
||||
return set(parsed)
|
||||
return set()
|
||||
except (ValueError, SyntaxError):
|
||||
# If parsing fails, return empty set
|
||||
logger.warning(f"Failed to parse theme tags: {tags[:100]}")
|
||||
return set()
|
||||
|
||||
return set()
|
||||
|
||||
@staticmethod
|
||||
def calculate_similarity(tags_a: set[str], tags_b: set[str]) -> float:
|
||||
"""
|
||||
Calculate Jaccard similarity between two sets of theme tags.
|
||||
|
||||
Jaccard index = intersection / union
|
||||
|
||||
Args:
|
||||
tags_a: First set of theme tags
|
||||
tags_b: Second set of theme tags
|
||||
|
||||
Returns:
|
||||
Similarity score from 0.0 (no overlap) to 1.0 (identical)
|
||||
"""
|
||||
if not tags_a or not tags_b:
|
||||
return 0.0
|
||||
|
||||
intersection = len(tags_a & tags_b)
|
||||
union = len(tags_a | tags_b)
|
||||
|
||||
if union == 0:
|
||||
return 0.0
|
||||
|
||||
return intersection / union
|
||||
|
||||
def get_card_tags(self, card_name: str) -> Optional[set[str]]:
|
||||
"""
|
||||
Get theme tags for a specific card.
|
||||
|
||||
Args:
|
||||
card_name: Name of the card
|
||||
|
||||
Returns:
|
||||
Set of theme tags, or None if card not found
|
||||
"""
|
||||
card_row = self.cards_df[self.cards_df["name"] == card_name]
|
||||
|
||||
if card_row.empty:
|
||||
return None
|
||||
|
||||
tags = card_row.iloc[0]["themeTags"]
|
||||
return self.parse_theme_tags(tags)
|
||||
|
||||
def find_similar(
|
||||
self,
|
||||
card_name: str,
|
||||
threshold: float = 0.8,
|
||||
limit: int = 10,
|
||||
min_results: int = 3,
|
||||
adaptive: bool = True,
|
||||
use_cache: bool = True,
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Find cards with similar theme tags.
|
||||
|
||||
Uses adaptive threshold scaling to ensure minimum number of results.
|
||||
Tries 80% → 60% thresholds until min_results is met (skips 70% for performance).
|
||||
|
||||
Checks cache first for pre-computed results, falls back to real-time calculation.
|
||||
|
||||
Args:
|
||||
card_name: Name of the target card
|
||||
threshold: Starting similarity threshold (0.0-1.0), default 0.8 (80%)
|
||||
limit: Maximum number of results, default 10
|
||||
min_results: Minimum desired results for adaptive scaling, default 3
|
||||
adaptive: Enable adaptive threshold scaling, default True
|
||||
use_cache: Check cache first before calculating, default True
|
||||
|
||||
Returns:
|
||||
List of dicts with keys: name, similarity, themeTags, edhrecRank, threshold_used
|
||||
Sorted by similarity descending, then by EDHREC rank ascending (more popular first)
|
||||
Returns empty list if card not found or has no tags
|
||||
"""
|
||||
# Check cache first
|
||||
if use_cache and self.cache.enabled:
|
||||
cached_results = self.cache.get_similar(card_name, limit=limit, randomize=True)
|
||||
if cached_results is not None:
|
||||
logger.info(f"Cache HIT for '{card_name}' ({len(cached_results)} results, randomized)")
|
||||
return cached_results
|
||||
else:
|
||||
logger.info(f"Cache MISS for '{card_name}', calculating...")
|
||||
|
||||
# Get target card tags
|
||||
target_tags = self.get_card_tags(card_name)
|
||||
|
||||
if target_tags is None:
|
||||
logger.warning(f"Card not found: {card_name}")
|
||||
return []
|
||||
|
||||
if not target_tags:
|
||||
logger.info(f"Card has no theme tags: {card_name}")
|
||||
return []
|
||||
|
||||
# Get signature tags for TARGET card only (top 5 most frequent + 1-3 random)
|
||||
# This focuses the search on the target's defining characteristics
|
||||
# with some diversity from random tags
|
||||
|
||||
# Use card name hash as seed for reproducible randomness per card
|
||||
card_seed = hash(card_name) % (2**31)
|
||||
target_signature = self.get_signature_tags(
|
||||
target_tags,
|
||||
top_n=5,
|
||||
seed=card_seed
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Target '{card_name}': {len(target_tags)} tags → "
|
||||
f"{len(target_signature)} signature tags"
|
||||
)
|
||||
|
||||
# Try adaptive thresholds if enabled
|
||||
thresholds_to_try = [threshold]
|
||||
if adaptive:
|
||||
# Build list of thresholds to try: 80% → 60% → 50% (skip 70% for performance)
|
||||
thresholds_to_try = []
|
||||
if threshold >= 0.8:
|
||||
thresholds_to_try.append(0.8)
|
||||
if threshold >= 0.6:
|
||||
thresholds_to_try.append(0.6)
|
||||
if threshold >= 0.5:
|
||||
thresholds_to_try.append(0.5)
|
||||
|
||||
# Remove duplicates and sort descending
|
||||
thresholds_to_try = sorted(set(thresholds_to_try), reverse=True)
|
||||
|
||||
results = []
|
||||
threshold_used = threshold
|
||||
|
||||
for current_threshold in thresholds_to_try:
|
||||
# Use inverted index for fast candidate filtering
|
||||
# Instead of checking all 29k cards, only check cards that share at least one signature tag
|
||||
results = []
|
||||
|
||||
# Build inverted index on first use (lazily)
|
||||
if self._tag_to_cards_index is None:
|
||||
self._build_tag_index()
|
||||
|
||||
# Get candidate cards that share at least one signature tag
|
||||
# This drastically reduces the number of cards we need to check
|
||||
candidate_cards = set()
|
||||
for tag in target_signature:
|
||||
if tag in self._tag_to_cards_index:
|
||||
candidate_cards.update(self._tag_to_cards_index[tag])
|
||||
|
||||
# Remove the target card itself
|
||||
candidate_cards.discard(card_name)
|
||||
|
||||
if not candidate_cards:
|
||||
continue # No candidates at all, try lower threshold
|
||||
|
||||
# Now calculate scores only for candidates (vectorized where possible)
|
||||
# Pre-filter candidates by checking if they meet minimum overlap requirement
|
||||
min_overlap = int(len(target_signature) * current_threshold)
|
||||
|
||||
for candidate_name in candidate_cards:
|
||||
candidate_tags = self.cleaned_tags_cache.get(candidate_name)
|
||||
|
||||
if not candidate_tags:
|
||||
continue
|
||||
|
||||
# Fast overlap check using set intersection
|
||||
overlap = target_signature & candidate_tags
|
||||
overlap_count = len(overlap)
|
||||
|
||||
# Quick filter: skip if overlap too small
|
||||
if overlap_count < min_overlap:
|
||||
continue
|
||||
|
||||
# Calculate exact containment score
|
||||
containment_score = overlap_count / len(target_signature)
|
||||
|
||||
if containment_score >= current_threshold:
|
||||
# Get EDHREC rank efficiently from card metadata
|
||||
edhrec_rank = self._card_metadata.get(candidate_name, {}).get('edhrecRank', float('inf'))
|
||||
|
||||
results.append({
|
||||
"name": candidate_name,
|
||||
"similarity": containment_score,
|
||||
"themeTags": list(candidate_tags),
|
||||
"edhrecRank": edhrec_rank,
|
||||
})
|
||||
|
||||
# Sort by similarity descending, then by EDHREC rank ascending (lower is better)
|
||||
# Unranked cards (inf) will appear last
|
||||
results.sort(key=lambda x: (-x["similarity"], x["edhrecRank"]))
|
||||
|
||||
# Check if we have enough results
|
||||
if len(results) >= min_results or not adaptive:
|
||||
threshold_used = current_threshold
|
||||
break
|
||||
|
||||
# Log that we're trying a lower threshold
|
||||
logger.info(
|
||||
f"Found {len(results)} results at {current_threshold:.0%} "
|
||||
f"for '{card_name}', trying lower threshold..."
|
||||
)
|
||||
|
||||
# Add threshold_used to results
|
||||
for result in results:
|
||||
result["threshold_used"] = threshold_used
|
||||
|
||||
logger.info(
|
||||
f"Found {len(results)} similar cards for '{card_name}' "
|
||||
f"at {threshold_used:.0%} threshold"
|
||||
)
|
||||
|
||||
final_results = results[:limit]
|
||||
|
||||
# Cache the results for future lookups
|
||||
if use_cache and self.cache.enabled and final_results:
|
||||
self.cache.set_similar(card_name, final_results)
|
||||
logger.debug(f"Cached {len(final_results)} results for '{card_name}'")
|
||||
|
||||
return final_results
|
||||
386
code/web/services/similarity_cache.py
Normal file
386
code/web/services/similarity_cache.py
Normal file
|
|
@ -0,0 +1,386 @@
|
|||
"""
|
||||
Similarity cache manager for card similarity calculations.
|
||||
|
||||
Provides persistent caching of pre-computed card similarity scores to improve
|
||||
card detail page load times from 2-6s down to <500ms.
|
||||
|
||||
Cache format: Parquet file with columnar structure:
|
||||
- card_name: str (source card)
|
||||
- similar_name: str (similar card name)
|
||||
- similarity: float (similarity score)
|
||||
- edhrecRank: float (EDHREC rank of similar card)
|
||||
- rank: int (ranking position, 0-19 for top 20)
|
||||
|
||||
Metadata stored in separate JSON sidecar file.
|
||||
|
||||
Benefits vs JSON:
|
||||
- 5-10x faster load times
|
||||
- 50-70% smaller file size
|
||||
- Better compression for large datasets
|
||||
- Consistent with other card data storage
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pyarrow.parquet as pq
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Default cache settings
|
||||
CACHE_VERSION = "2.0" # Bumped for Parquet format
|
||||
DEFAULT_CACHE_PATH = Path(__file__).parents[3] / "card_files" / "similarity_cache.parquet"
|
||||
DEFAULT_METADATA_PATH = Path(__file__).parents[3] / "card_files" / "similarity_cache_metadata.json"
|
||||
|
||||
|
||||
class SimilarityCache:
|
||||
"""Manages persistent cache for card similarity calculations using Parquet."""
|
||||
|
||||
def __init__(self, cache_path: Optional[Path] = None, enabled: bool = True):
|
||||
"""
|
||||
Initialize similarity cache manager.
|
||||
|
||||
Args:
|
||||
cache_path: Path to cache file. If None, uses DEFAULT_CACHE_PATH
|
||||
enabled: Whether cache is enabled (can be disabled via env var)
|
||||
"""
|
||||
self.cache_path = cache_path or DEFAULT_CACHE_PATH
|
||||
self.metadata_path = self.cache_path.with_name(
|
||||
self.cache_path.stem + "_metadata.json"
|
||||
)
|
||||
self.enabled = enabled and os.getenv("SIMILARITY_CACHE_ENABLED", "1") == "1"
|
||||
self._cache_df: Optional[pd.DataFrame] = None
|
||||
self._metadata: Optional[dict] = None
|
||||
|
||||
# Ensure cache directory exists
|
||||
self.cache_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if self.enabled:
|
||||
logger.info(f"SimilarityCache initialized at {self.cache_path}")
|
||||
else:
|
||||
logger.info("SimilarityCache disabled")
|
||||
|
||||
def load_cache(self) -> pd.DataFrame:
|
||||
"""
|
||||
Load cache from disk.
|
||||
|
||||
Returns:
|
||||
DataFrame with columns: card_name, similar_name, similarity, edhrecRank, rank
|
||||
Returns empty DataFrame if file doesn't exist or loading fails
|
||||
"""
|
||||
if not self.enabled:
|
||||
return self._empty_cache_df()
|
||||
|
||||
if self._cache_df is not None:
|
||||
return self._cache_df
|
||||
|
||||
if not self.cache_path.exists():
|
||||
logger.info("Cache file not found, returning empty cache")
|
||||
self._cache_df = self._empty_cache_df()
|
||||
return self._cache_df
|
||||
|
||||
try:
|
||||
# Load Parquet file
|
||||
self._cache_df = pq.read_table(self.cache_path).to_pandas()
|
||||
|
||||
# Load metadata
|
||||
if self.metadata_path.exists():
|
||||
with open(self.metadata_path, "r", encoding="utf-8") as f:
|
||||
self._metadata = json.load(f)
|
||||
else:
|
||||
self._metadata = self._empty_metadata()
|
||||
|
||||
# Validate cache structure
|
||||
if not self._validate_cache(self._cache_df):
|
||||
logger.warning("Cache validation failed, returning empty cache")
|
||||
self._cache_df = self._empty_cache_df()
|
||||
return self._cache_df
|
||||
|
||||
total_cards = len(self._cache_df["card_name"].unique()) if len(self._cache_df) > 0 else 0
|
||||
logger.info(
|
||||
f"Loaded similarity cache v{self._metadata.get('version', 'unknown')} with {total_cards:,} cards ({len(self._cache_df):,} entries)"
|
||||
)
|
||||
|
||||
return self._cache_df
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load cache: {e}")
|
||||
self._cache_df = self._empty_cache_df()
|
||||
return self._cache_df
|
||||
|
||||
def save_cache(self, cache_df: pd.DataFrame, metadata: Optional[dict] = None) -> bool:
|
||||
"""
|
||||
Save cache to disk.
|
||||
|
||||
Args:
|
||||
cache_df: DataFrame with similarity data
|
||||
metadata: Optional metadata dict. If None, uses current metadata with updates.
|
||||
|
||||
Returns:
|
||||
True if save successful, False otherwise
|
||||
"""
|
||||
if not self.enabled:
|
||||
logger.debug("Cache disabled, skipping save")
|
||||
return False
|
||||
|
||||
try:
|
||||
# Ensure directory exists
|
||||
self.cache_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Update metadata
|
||||
if metadata is None:
|
||||
metadata = self._metadata or self._empty_metadata()
|
||||
|
||||
total_cards = len(cache_df["card_name"].unique()) if len(cache_df) > 0 else 0
|
||||
metadata["total_cards"] = total_cards
|
||||
metadata["last_updated"] = datetime.now().isoformat()
|
||||
metadata["total_entries"] = len(cache_df)
|
||||
|
||||
# Write Parquet file (with compression)
|
||||
temp_cache = self.cache_path.with_suffix(".tmp")
|
||||
pq.write_table(
|
||||
pa.table(cache_df),
|
||||
temp_cache,
|
||||
compression="snappy",
|
||||
version="2.6",
|
||||
)
|
||||
temp_cache.replace(self.cache_path)
|
||||
|
||||
# Write metadata file
|
||||
temp_meta = self.metadata_path.with_suffix(".tmp")
|
||||
with open(temp_meta, "w", encoding="utf-8") as f:
|
||||
json.dump(metadata, f, indent=2, ensure_ascii=False)
|
||||
temp_meta.replace(self.metadata_path)
|
||||
|
||||
self._cache_df = cache_df
|
||||
self._metadata = metadata
|
||||
|
||||
logger.info(f"Saved similarity cache with {total_cards:,} cards ({len(cache_df):,} entries)")
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to save cache: {e}")
|
||||
return False
|
||||
|
||||
def get_similar(self, card_name: str, limit: int = 5, randomize: bool = True) -> Optional[list[dict]]:
|
||||
"""
|
||||
Get cached similar cards for a given card.
|
||||
|
||||
Args:
|
||||
card_name: Name of the card to look up
|
||||
limit: Maximum number of results to return
|
||||
randomize: If True, randomly sample from cached results; if False, return top by rank
|
||||
|
||||
Returns:
|
||||
List of similar cards with similarity scores, or None if not in cache
|
||||
"""
|
||||
if not self.enabled:
|
||||
return None
|
||||
|
||||
cache_df = self.load_cache()
|
||||
|
||||
if len(cache_df) == 0:
|
||||
return None
|
||||
|
||||
# Filter to this card
|
||||
card_data = cache_df[cache_df["card_name"] == card_name]
|
||||
|
||||
if len(card_data) == 0:
|
||||
return None
|
||||
|
||||
# Randomly sample if requested and we have more results than limit
|
||||
if randomize and len(card_data) > limit:
|
||||
card_data = card_data.sample(n=limit, random_state=None)
|
||||
else:
|
||||
# Sort by rank and take top N
|
||||
card_data = card_data.sort_values("rank").head(limit)
|
||||
|
||||
# Convert to list of dicts
|
||||
results = []
|
||||
for _, row in card_data.iterrows():
|
||||
results.append({
|
||||
"name": row["similar_name"],
|
||||
"similarity": row["similarity"],
|
||||
"edhrecRank": row["edhrecRank"],
|
||||
})
|
||||
|
||||
return results
|
||||
|
||||
def set_similar(self, card_name: str, similar_cards: list[dict]) -> bool:
|
||||
"""
|
||||
Cache similar cards for a given card.
|
||||
|
||||
Args:
|
||||
card_name: Name of the card
|
||||
similar_cards: List of similar cards with similarity scores
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
if not self.enabled:
|
||||
return False
|
||||
|
||||
cache_df = self.load_cache()
|
||||
|
||||
# Remove existing entries for this card
|
||||
cache_df = cache_df[cache_df["card_name"] != card_name]
|
||||
|
||||
# Add new entries
|
||||
new_rows = []
|
||||
for rank, card in enumerate(similar_cards):
|
||||
new_rows.append({
|
||||
"card_name": card_name,
|
||||
"similar_name": card["name"],
|
||||
"similarity": card["similarity"],
|
||||
"edhrecRank": card.get("edhrecRank", float("inf")),
|
||||
"rank": rank,
|
||||
})
|
||||
|
||||
if new_rows:
|
||||
new_df = pd.DataFrame(new_rows)
|
||||
cache_df = pd.concat([cache_df, new_df], ignore_index=True)
|
||||
|
||||
return self.save_cache(cache_df)
|
||||
|
||||
def invalidate(self, card_name: Optional[str] = None) -> bool:
|
||||
"""
|
||||
Invalidate cache entries.
|
||||
|
||||
Args:
|
||||
card_name: If provided, invalidate only this card. If None, clear entire cache.
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
if not self.enabled:
|
||||
return False
|
||||
|
||||
if card_name is None:
|
||||
# Clear entire cache
|
||||
logger.info("Clearing entire similarity cache")
|
||||
self._cache_df = self._empty_cache_df()
|
||||
self._metadata = self._empty_metadata()
|
||||
return self.save_cache(self._cache_df, self._metadata)
|
||||
|
||||
# Clear specific card
|
||||
cache_df = self.load_cache()
|
||||
|
||||
initial_len = len(cache_df)
|
||||
cache_df = cache_df[cache_df["card_name"] != card_name]
|
||||
|
||||
if len(cache_df) < initial_len:
|
||||
logger.info(f"Invalidated cache for card: {card_name}")
|
||||
return self.save_cache(cache_df)
|
||||
|
||||
return False
|
||||
|
||||
def get_stats(self) -> dict:
|
||||
"""
|
||||
Get cache statistics.
|
||||
|
||||
Returns:
|
||||
Dictionary with cache stats (version, total_cards, build_date, file_size, etc.)
|
||||
"""
|
||||
if not self.enabled:
|
||||
return {"enabled": False}
|
||||
|
||||
cache_df = self.load_cache()
|
||||
metadata = self._metadata or self._empty_metadata()
|
||||
|
||||
stats = {
|
||||
"enabled": True,
|
||||
"version": metadata.get("version", "unknown"),
|
||||
"total_cards": len(cache_df["card_name"].unique()) if len(cache_df) > 0 else 0,
|
||||
"total_entries": len(cache_df),
|
||||
"build_date": metadata.get("build_date"),
|
||||
"last_updated": metadata.get("last_updated"),
|
||||
"file_exists": self.cache_path.exists(),
|
||||
"file_path": str(self.cache_path),
|
||||
"format": "parquet",
|
||||
}
|
||||
|
||||
if self.cache_path.exists():
|
||||
stats["file_size_mb"] = round(
|
||||
self.cache_path.stat().st_size / (1024 * 1024), 2
|
||||
)
|
||||
|
||||
return stats
|
||||
|
||||
@staticmethod
|
||||
def _empty_cache_df() -> pd.DataFrame:
|
||||
"""
|
||||
Create empty cache DataFrame.
|
||||
|
||||
Returns:
|
||||
Empty DataFrame with correct schema
|
||||
"""
|
||||
return pd.DataFrame(columns=["card_name", "similar_name", "similarity", "edhrecRank", "rank"])
|
||||
|
||||
@staticmethod
|
||||
def _empty_metadata() -> dict:
|
||||
"""
|
||||
Create empty metadata structure.
|
||||
|
||||
Returns:
|
||||
Empty metadata dictionary
|
||||
"""
|
||||
return {
|
||||
"version": CACHE_VERSION,
|
||||
"total_cards": 0,
|
||||
"total_entries": 0,
|
||||
"build_date": None,
|
||||
"last_updated": None,
|
||||
"threshold": 0.6,
|
||||
"min_results": 3,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _validate_cache(cache_df: pd.DataFrame) -> bool:
|
||||
"""
|
||||
Validate cache DataFrame structure.
|
||||
|
||||
Args:
|
||||
cache_df: DataFrame to validate
|
||||
|
||||
Returns:
|
||||
True if valid, False otherwise
|
||||
"""
|
||||
if not isinstance(cache_df, pd.DataFrame):
|
||||
return False
|
||||
|
||||
# Check required columns
|
||||
required_cols = {"card_name", "similar_name", "similarity", "edhrecRank", "rank"}
|
||||
if not required_cols.issubset(cache_df.columns):
|
||||
logger.warning(f"Cache missing required columns. Expected: {required_cols}, Got: {set(cache_df.columns)}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# Singleton instance for global access
|
||||
_cache_instance: Optional[SimilarityCache] = None
|
||||
|
||||
|
||||
def get_cache() -> SimilarityCache:
|
||||
"""
|
||||
Get singleton cache instance.
|
||||
|
||||
Returns:
|
||||
Global SimilarityCache instance
|
||||
"""
|
||||
global _cache_instance
|
||||
|
||||
if _cache_instance is None:
|
||||
# Check environment variables for custom path
|
||||
cache_path_str = os.getenv("SIMILARITY_CACHE_PATH")
|
||||
cache_path = Path(cache_path_str) if cache_path_str else None
|
||||
|
||||
_cache_instance = SimilarityCache(cache_path=cache_path)
|
||||
|
||||
return _cache_instance
|
||||
|
|
@ -906,6 +906,90 @@ img.lqip.loaded { filter: blur(0); opacity: 1; }
|
|||
white-space: nowrap;
|
||||
}
|
||||
|
||||
/* Card Details button on tiles */
|
||||
.card-details-btn {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
gap: 0.35rem;
|
||||
padding: 0.5rem 0.75rem;
|
||||
background: var(--primary);
|
||||
color: white;
|
||||
text-decoration: none;
|
||||
border-radius: 6px;
|
||||
font-weight: 500;
|
||||
font-size: 0.85rem;
|
||||
transition: all 0.2s;
|
||||
margin-top: 0.5rem;
|
||||
border: none;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.card-details-btn:hover {
|
||||
background: var(--primary-hover);
|
||||
transform: translateY(-1px);
|
||||
box-shadow: 0 2px 8px rgba(59, 130, 246, 0.4);
|
||||
}
|
||||
|
||||
.card-details-btn svg {
|
||||
flex-shrink: 0;
|
||||
}
|
||||
|
||||
/* Card Preview Modal */
|
||||
.preview-modal {
|
||||
display: none;
|
||||
position: fixed;
|
||||
top: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
background: rgba(0, 0, 0, 0.85);
|
||||
z-index: 9999;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
}
|
||||
|
||||
.preview-modal.active {
|
||||
display: flex;
|
||||
}
|
||||
|
||||
.preview-content {
|
||||
position: relative;
|
||||
max-width: 90%;
|
||||
max-height: 90%;
|
||||
}
|
||||
|
||||
.preview-content img {
|
||||
max-width: 100%;
|
||||
max-height: 90vh;
|
||||
border-radius: 12px;
|
||||
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.5);
|
||||
}
|
||||
|
||||
.preview-close {
|
||||
position: absolute;
|
||||
top: -40px;
|
||||
right: 0;
|
||||
background: rgba(255, 255, 255, 0.9);
|
||||
color: #000;
|
||||
border: none;
|
||||
border-radius: 50%;
|
||||
width: 36px;
|
||||
height: 36px;
|
||||
font-size: 24px;
|
||||
font-weight: bold;
|
||||
cursor: pointer;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
transition: all 0.2s;
|
||||
}
|
||||
|
||||
.preview-close:hover {
|
||||
background: #fff;
|
||||
transform: scale(1.1);
|
||||
}
|
||||
|
||||
/* Pagination controls */
|
||||
.card-browser-pagination {
|
||||
display: flex;
|
||||
|
|
@ -1063,3 +1147,55 @@ img.lqip.loaded { filter: blur(0); opacity: 1; }
|
|||
.theme-chip button:hover {
|
||||
color: var(--error-color);
|
||||
}
|
||||
|
||||
/* Card Detail Page Styles */
|
||||
.card-tags {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
gap: 0.5rem;
|
||||
margin-top: 1rem;
|
||||
margin-bottom: 1rem;
|
||||
}
|
||||
|
||||
.card-tag {
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
padding: 0.35rem 0.75rem;
|
||||
border-radius: 16px;
|
||||
font-size: 0.85rem;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.back-button {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
gap: 0.5rem;
|
||||
padding: 0.75rem 1.5rem;
|
||||
background: var(--panel);
|
||||
color: var(--text);
|
||||
text-decoration: none;
|
||||
border-radius: 8px;
|
||||
border: 1px solid var(--border);
|
||||
font-weight: 500;
|
||||
transition: all 0.2s;
|
||||
margin-bottom: 2rem;
|
||||
}
|
||||
|
||||
.back-button:hover {
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
border-color: var(--ring);
|
||||
}
|
||||
|
||||
/* Card Detail Page - Main Card Image */
|
||||
.card-image-large {
|
||||
flex: 0 0 auto;
|
||||
max-width: 360px !important;
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
.card-image-large img {
|
||||
width: 100%;
|
||||
height: auto;
|
||||
border-radius: 12px;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
{# Single card tile for grid display #}
|
||||
<div class="card-browser-tile card-tile" data-card-name="{{ card.name }}" data-tags="{{ card.themeTags_parsed|join(', ') if card.themeTags_parsed else '' }}">
|
||||
{# Card image #}
|
||||
{# Card image (uses hover system for preview) #}
|
||||
<div class="card-browser-tile-image">
|
||||
<img
|
||||
loading="lazy"
|
||||
|
|
@ -55,6 +55,16 @@
|
|||
{% endif %}
|
||||
</div>
|
||||
|
||||
{# Card Details button (only show if feature enabled) #}
|
||||
{% if enable_card_details %}
|
||||
<a href="/cards/{{ card.name }}" class="card-details-btn" onclick="event.stopPropagation()">
|
||||
Card Details
|
||||
<svg width="14" height="14" viewBox="0 0 16 16" fill="currentColor">
|
||||
<path d="M8.707 3.293a1 1 0 010 1.414L5.414 8l3.293 3.293a1 1 0 01-1.414 1.414l-4-4a1 1 0 010-1.414l4-4a1 1 0 011.414 0z" transform="rotate(180 8 8)"/>
|
||||
</svg>
|
||||
</a>
|
||||
{% endif %}
|
||||
|
||||
{# Theme tags (show all tags, not truncated) #}
|
||||
{% if card.themeTags_parsed and card.themeTags_parsed|length > 0 %}
|
||||
<div class="card-browser-tile-tags">
|
||||
|
|
|
|||
250
code/web/templates/browse/cards/_similar_cards.html
Normal file
250
code/web/templates/browse/cards/_similar_cards.html
Normal file
|
|
@ -0,0 +1,250 @@
|
|||
<style>
|
||||
.similar-cards-header {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: space-between;
|
||||
margin-bottom: 1.5rem;
|
||||
}
|
||||
|
||||
.similar-cards-title {
|
||||
font-size: 1.5rem;
|
||||
font-weight: bold;
|
||||
color: var(--text);
|
||||
}
|
||||
|
||||
.similar-cards-grid {
|
||||
display: grid;
|
||||
grid-template-columns: repeat(auto-fill, 280px);
|
||||
gap: 1.25rem;
|
||||
margin-bottom: 2rem;
|
||||
justify-content: start;
|
||||
}
|
||||
|
||||
.similar-card-tile {
|
||||
background: var(--panel);
|
||||
border: 1px solid var(--border);
|
||||
border-radius: 12px;
|
||||
padding: 0.85rem;
|
||||
transition: all 0.2s;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.6rem;
|
||||
width: 280px;
|
||||
}
|
||||
|
||||
.similar-card-tile:hover {
|
||||
transform: translateY(-2px);
|
||||
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
|
||||
border-color: var(--ring);
|
||||
}
|
||||
|
||||
.similar-card-image {
|
||||
width: 100%;
|
||||
cursor: pointer;
|
||||
border-radius: 8px;
|
||||
transition: transform 0.2s;
|
||||
}
|
||||
|
||||
.similar-card-image:hover {
|
||||
transform: scale(1.02);
|
||||
}
|
||||
|
||||
.similar-card-image img {
|
||||
width: 100%;
|
||||
height: auto;
|
||||
border-radius: 8px;
|
||||
}
|
||||
|
||||
.similar-card-info {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.5rem;
|
||||
}
|
||||
|
||||
.similar-card-name {
|
||||
font-size: 1rem;
|
||||
font-weight: 600;
|
||||
color: var(--text);
|
||||
}
|
||||
|
||||
.similarity-score {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
gap: 0.5rem;
|
||||
padding: 0.25rem 0.75rem;
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
border-radius: 16px;
|
||||
font-size: 0.85rem;
|
||||
font-weight: 600;
|
||||
width: fit-content;
|
||||
}
|
||||
|
||||
.similarity-score-high {
|
||||
background: #28a745;
|
||||
}
|
||||
|
||||
.similarity-score-medium {
|
||||
background: #ffc107;
|
||||
color: #000;
|
||||
}
|
||||
|
||||
.similarity-score-low {
|
||||
background: #6c757d;
|
||||
}
|
||||
|
||||
.similar-card-details-btn {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
gap: 0.5rem;
|
||||
padding: 0.5rem 1rem;
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
text-decoration: none;
|
||||
border-radius: 6px;
|
||||
font-weight: 500;
|
||||
transition: all 0.2s;
|
||||
margin-top: auto;
|
||||
}
|
||||
|
||||
.similar-card-details-btn:hover {
|
||||
opacity: 0.9;
|
||||
transform: translateY(-1px);
|
||||
}
|
||||
|
||||
.no-similar-cards {
|
||||
text-align: center;
|
||||
padding: 3rem 1rem;
|
||||
color: var(--muted);
|
||||
background: var(--panel);
|
||||
border: 1px solid var(--border);
|
||||
border-radius: 12px;
|
||||
}
|
||||
|
||||
.no-similar-cards-icon {
|
||||
font-size: 3rem;
|
||||
margin-bottom: 1rem;
|
||||
opacity: 0.5;
|
||||
}
|
||||
|
||||
.no-similar-cards-text {
|
||||
font-size: 1.1rem;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.similar-card-tags {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
gap: 0.35rem;
|
||||
margin-top: 0.25rem;
|
||||
}
|
||||
|
||||
.similar-tag {
|
||||
font-size: 0.75rem;
|
||||
padding: 0.2rem 0.5rem;
|
||||
background: rgba(148, 163, 184, 0.15);
|
||||
color: var(--muted);
|
||||
border-radius: 4px;
|
||||
white-space: nowrap;
|
||||
transition: all 0.2s;
|
||||
}
|
||||
|
||||
.similar-tag-overlap {
|
||||
background: var(--accent, #38bdf8);
|
||||
color: white;
|
||||
font-weight: 600;
|
||||
border: 1px solid rgba(56, 189, 248, 0.3);
|
||||
box-shadow: 0 0 0 1px rgba(56, 189, 248, 0.2);
|
||||
}
|
||||
|
||||
@media (max-width: 768px) {
|
||||
.similar-cards-grid {
|
||||
grid-template-columns: 1fr;
|
||||
}
|
||||
}
|
||||
</style>
|
||||
|
||||
<div class="similar-cards-section">
|
||||
<div class="similar-cards-header">
|
||||
<h2 class="similar-cards-title">Similar Cards</h2>
|
||||
</div>
|
||||
|
||||
{% if similar_cards and similar_cards|length > 0 %}
|
||||
<div class="similar-cards-grid">
|
||||
{% for card in similar_cards %}
|
||||
<div class="similar-card-tile card-tile" data-card-name="{{ card.name }}">
|
||||
<!-- Card Image (uses hover system for preview) -->
|
||||
<div class="similar-card-image">
|
||||
<img src="https://api.scryfall.com/cards/named?fuzzy={{ card.name|urlencode }}&format=image&version=normal"
|
||||
alt="{{ card.name }}"
|
||||
loading="lazy"
|
||||
data-card-name="{{ card.name }}"
|
||||
onerror="this.style.display='none'; this.nextElementSibling.style.display='flex';">
|
||||
{# Fallback for missing images #}
|
||||
<div style="display:none; width:100%; aspect-ratio:488/680; align-items:center; justify-content:center; background:#1a1d24; color:#9ca3af; font-size:14px; padding:1rem; text-align:center; border-radius:8px;">
|
||||
{{ card.name }}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Card Info -->
|
||||
<div class="similar-card-info">
|
||||
<div class="similar-card-name">{{ card.name }}</div>
|
||||
|
||||
<!-- Matching Themes Summary -->
|
||||
{% if card.themeTags and card.themeTags|length > 0 %}
|
||||
{% set main_card_tags = main_card_tags|default([]) %}
|
||||
{% set matching_tags = [] %}
|
||||
{% for tag in card.themeTags %}
|
||||
{% if tag in main_card_tags %}
|
||||
{% set _ = matching_tags.append(tag) %}
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% if matching_tags|length > 0 %}
|
||||
<div style="font-size: 0.8rem; color: var(--accent, #38bdf8); font-weight: 600; margin-top: 0.25rem;">
|
||||
✓ {{ matching_tags|length }} matching theme{{ 's' if matching_tags|length > 1 else '' }}
|
||||
</div>
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
|
||||
<!-- EDHREC Rank -->
|
||||
{% if card.edhrecRank %}
|
||||
<div class="card-stat" style="font-size: 0.85rem; color: var(--muted);">
|
||||
EDHREC Rank: #{{ card.edhrecRank }}
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
<!-- Theme Tags with Overlap Highlighting -->
|
||||
{% if card.themeTags and card.themeTags|length > 0 %}
|
||||
<div class="similar-card-tags">
|
||||
{% set main_card_tags = main_card_tags|default([]) %}
|
||||
{% for tag in card.themeTags %}
|
||||
{% set is_overlap = tag in main_card_tags %}
|
||||
<span class="similar-tag {% if is_overlap %}similar-tag-overlap{% endif %}" title="{% if is_overlap %}Matches main card{% endif %}">
|
||||
{{ tag }}
|
||||
</span>
|
||||
{% endfor %}
|
||||
</div>
|
||||
{% endif %}
|
||||
</div>
|
||||
|
||||
<!-- Card Details Button -->
|
||||
<a href="/cards/{{ card.name }}" class="similar-card-details-btn" onclick="event.stopPropagation()">
|
||||
Card Details
|
||||
<svg width="16" height="16" viewBox="0 0 16 16" fill="currentColor">
|
||||
<path d="M8.707 3.293a1 1 0 010 1.414L5.414 8l3.293 3.293a1 1 0 01-1.414 1.414l-4-4a1 1 0 010-1.414l4-4a1 1 0 011.414 0z" transform="rotate(180 8 8)"/>
|
||||
</svg>
|
||||
</a>
|
||||
</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
{% else %}
|
||||
<div class="no-similar-cards">
|
||||
<div class="no-similar-cards-icon">🔍</div>
|
||||
<div class="no-similar-cards-text">No similar cards found</div>
|
||||
<p style="margin-top: 0.5rem; font-size: 0.9rem;">
|
||||
This card has unique theme tags or no cards share similar characteristics.
|
||||
</p>
|
||||
</div>
|
||||
{% endif %}
|
||||
</div>
|
||||
273
code/web/templates/browse/cards/detail.html
Normal file
273
code/web/templates/browse/cards/detail.html
Normal file
|
|
@ -0,0 +1,273 @@
|
|||
{% extends "base.html" %}
|
||||
|
||||
{% block title %}{{ card.name }} - Card Details{% endblock %}
|
||||
|
||||
{% block head %}
|
||||
<style>
|
||||
.card-detail-container {
|
||||
max-width: 1400px;
|
||||
margin: 0 auto;
|
||||
padding: 2rem 1rem;
|
||||
}
|
||||
|
||||
.card-detail-header {
|
||||
display: flex;
|
||||
gap: 2rem;
|
||||
margin-bottom: 3rem;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
|
||||
.card-image-large {
|
||||
flex: 0 0 auto;
|
||||
max-width: 360px;
|
||||
cursor: pointer;
|
||||
transition: transform 0.2s;
|
||||
}
|
||||
|
||||
.card-image-large:hover {
|
||||
transform: scale(1.02);
|
||||
}
|
||||
|
||||
.card-image-large img {
|
||||
width: 100%;
|
||||
height: auto;
|
||||
border-radius: 12px;
|
||||
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
||||
}
|
||||
|
||||
.card-info {
|
||||
flex: 1;
|
||||
min-width: 300px;
|
||||
}
|
||||
|
||||
.card-title {
|
||||
font-size: 2rem;
|
||||
font-weight: bold;
|
||||
margin-bottom: 0.5rem;
|
||||
color: var(--text);
|
||||
}
|
||||
|
||||
.card-type {
|
||||
font-size: 1.1rem;
|
||||
color: var(--muted);
|
||||
margin-bottom: 1rem;
|
||||
}
|
||||
|
||||
.card-stats {
|
||||
display: flex;
|
||||
gap: 2rem;
|
||||
margin-bottom: 1.5rem;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
|
||||
.card-stat {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
|
||||
.card-stat-label {
|
||||
font-size: 0.85rem;
|
||||
color: var(--muted);
|
||||
text-transform: uppercase;
|
||||
letter-spacing: 0.5px;
|
||||
margin-bottom: 0.25rem;
|
||||
}
|
||||
|
||||
.card-stat-value {
|
||||
font-size: 1.25rem;
|
||||
font-weight: 600;
|
||||
color: var(--text);
|
||||
}
|
||||
|
||||
.card-text {
|
||||
background: var(--panel);
|
||||
padding: 1.5rem;
|
||||
border-radius: 8px;
|
||||
margin-bottom: 1.5rem;
|
||||
line-height: 1.6;
|
||||
white-space: pre-wrap;
|
||||
border: 1px solid var(--border);
|
||||
}
|
||||
|
||||
.card-colors {
|
||||
display: flex;
|
||||
gap: 0.5rem;
|
||||
margin-bottom: 1rem;
|
||||
}
|
||||
|
||||
.color-symbol {
|
||||
width: 24px;
|
||||
height: 24px;
|
||||
border-radius: 50%;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
font-weight: bold;
|
||||
font-size: 14px;
|
||||
border: 2px solid currentColor;
|
||||
}
|
||||
|
||||
.color-W { background: #F0E68C; color: #000; }
|
||||
.color-U { background: #0E68AB; color: #fff; }
|
||||
.color-B { background: #150B00; color: #fff; }
|
||||
.color-R { background: #D32029; color: #fff; }
|
||||
.color-G { background: #00733E; color: #fff; }
|
||||
.color-C { background: #ccc; color: #000; }
|
||||
|
||||
.card-tags {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
gap: 0.5rem;
|
||||
margin-bottom: 1rem;
|
||||
}
|
||||
|
||||
.card-tag {
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
padding: 0.35rem 0.75rem;
|
||||
border-radius: 16px;
|
||||
font-size: 0.85rem;
|
||||
font-weight: 500;
|
||||
}
|
||||
|
||||
.back-button {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
gap: 0.5rem;
|
||||
padding: 0.75rem 1.5rem;
|
||||
background: var(--panel);
|
||||
color: var(--text);
|
||||
text-decoration: none;
|
||||
border-radius: 8px;
|
||||
border: 1px solid var(--border);
|
||||
font-weight: 500;
|
||||
transition: all 0.2s;
|
||||
margin-bottom: 2rem;
|
||||
}
|
||||
|
||||
.back-button:hover {
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
border-color: var(--ring);
|
||||
}
|
||||
|
||||
.similar-section {
|
||||
margin-top: 3rem;
|
||||
padding-top: 2rem;
|
||||
border-top: 2px solid var(--border);
|
||||
}
|
||||
|
||||
/* Responsive adjustments */
|
||||
@media (max-width: 768px) {
|
||||
.card-detail-header {
|
||||
flex-direction: column;
|
||||
align-items: center;
|
||||
}
|
||||
|
||||
.card-image-large {
|
||||
max-width: 100%;
|
||||
}
|
||||
|
||||
.card-stats {
|
||||
gap: 1rem;
|
||||
}
|
||||
|
||||
.card-title {
|
||||
font-size: 1.5rem;
|
||||
}
|
||||
}
|
||||
</style>
|
||||
{% endblock %}
|
||||
|
||||
{% block content %}
|
||||
<div class="card-detail-container">
|
||||
<!-- Back Button -->
|
||||
<a href="/cards" class="back-button">
|
||||
<svg width="20" height="20" viewBox="0 0 20 20" fill="currentColor">
|
||||
<path d="M12.707 5.293a1 1 0 010 1.414L9.414 10l3.293 3.293a1 1 0 01-1.414 1.414l-4-4a1 1 0 010-1.414l4-4a1 1 0 011.414 0z"/>
|
||||
</svg>
|
||||
Back to Card Browser
|
||||
</a>
|
||||
|
||||
<!-- Card Header -->
|
||||
<div class="card-detail-header">
|
||||
<!-- Card Image (no hover on detail page) -->
|
||||
<div class="card-image-large">
|
||||
<img src="https://api.scryfall.com/cards/named?fuzzy={{ card.name|urlencode }}&format=image&version=normal"
|
||||
alt="{{ card.name }}"
|
||||
loading="lazy"
|
||||
onerror="this.style.display='none'; this.nextElementSibling.style.display='flex';">
|
||||
{# Fallback for missing images #}
|
||||
<div style="display:none; width:100%; height:680px; align-items:center; justify-content:center; background:#1a1d24; color:#9ca3af; font-size:18px; padding:2rem; text-align:center; border-radius:12px;">
|
||||
{{ card.name }}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Card Info -->
|
||||
<div class="card-info">
|
||||
<h1 class="card-title">{{ card.name }}</h1>
|
||||
|
||||
<div class="card-type">{{ card.type }}</div>
|
||||
|
||||
<!-- Color Identity -->
|
||||
{% if card.colors %}
|
||||
<div class="card-colors">
|
||||
{% for color in card.colors %}
|
||||
<span class="color-symbol color-{{ color }}">{{ color }}</span>
|
||||
{% endfor %}
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
<!-- Stats -->
|
||||
<div class="card-stats">
|
||||
{% if card.manaValue is not none %}
|
||||
<div class="card-stat">
|
||||
<span class="card-stat-label">Mana Value</span>
|
||||
<span class="card-stat-value">{{ card.manaValue }}</span>
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
{% if card.power is not none and card.power != 'NaN' and card.power|string != 'nan' %}
|
||||
<div class="card-stat">
|
||||
<span class="card-stat-label">Power / Toughness</span>
|
||||
<span class="card-stat-value">{{ card.power }} / {{ card.toughness }}</span>
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
{% if card.edhrecRank %}
|
||||
<div class="card-stat">
|
||||
<span class="card-stat-label">EDHREC Rank</span>
|
||||
<span class="card-stat-value">#{{ card.edhrecRank }}</span>
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
{% if card.rarity %}
|
||||
<div class="card-stat">
|
||||
<span class="card-stat-label">Rarity</span>
|
||||
<span class="card-stat-value">{{ card.rarity | capitalize }}</span>
|
||||
</div>
|
||||
{% endif %}
|
||||
</div>
|
||||
|
||||
<!-- Oracle Text -->
|
||||
{% if card.text %}
|
||||
<div class="card-text" style="white-space: pre-line;">{{ card.text | replace('\\n', '\n') }}</div>
|
||||
{% endif %}
|
||||
|
||||
<!-- Theme Tags -->
|
||||
{% if card.themeTags_parsed and card.themeTags_parsed|length > 0 %}
|
||||
<div class="card-tags">
|
||||
{% for tag in card.themeTags_parsed %}
|
||||
<span class="card-tag">{{ tag }}</span>
|
||||
{% endfor %}
|
||||
</div>
|
||||
{% endif %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Similar Cards Section -->
|
||||
<div class="similar-section">
|
||||
{% include "browse/cards/_similar_cards.html" %}
|
||||
</div>
|
||||
</div>
|
||||
{% endblock %}
|
||||
|
|
@ -345,7 +345,7 @@
|
|||
<button
|
||||
type="button"
|
||||
class="btn"
|
||||
hx-get="/cards/grid?cursor={{ last_card|urlencode }}{% if search %}&search={{ search|urlencode }}{% endif %}{% if theme %}&theme={{ theme|urlencode }}{% endif %}{% if color %}&color={{ color|urlencode }}{% endif %}{% if card_type %}&card_type={{ card_type|urlencode }}{% endif %}{% if rarity %}&rarity={{ rarity|urlencode }}{% endif %}{% if cmc_min %}&cmc_min={{ cmc_min }}{% endif %}{% if cmc_max %}&cmc_max={{ cmc_max }}{% endif %}"
|
||||
hx-get="/cards/grid?cursor={{ last_card|urlencode }}{% if search %}&search={{ search|urlencode }}{% endif %}{% for theme in themes %}&themes={{ theme|urlencode }}{% endfor %}{% if color %}&color={{ color|urlencode }}{% endif %}{% if card_type %}&card_type={{ card_type|urlencode }}{% endif %}{% if rarity %}&rarity={{ rarity|urlencode }}{% endif %}{% if sort and sort != 'name_asc' %}&sort={{ sort|urlencode }}{% endif %}{% if cmc_min %}&cmc_min={{ cmc_min }}{% endif %}{% if cmc_max %}&cmc_max={{ cmc_max }}{% endif %}{% if power_min %}&power_min={{ power_min }}{% endif %}{% if power_max %}&power_max={{ power_max }}{% endif %}{% if tough_min %}&tough_min={{ tough_min }}{% endif %}{% if tough_max %}&tough_max={{ tough_max }}{% endif %}"
|
||||
hx-target="#card-grid"
|
||||
hx-swap="beforeend"
|
||||
hx-indicator="#load-indicator">
|
||||
|
|
|
|||
88
code/web/templates/error.html
Normal file
88
code/web/templates/error.html
Normal file
|
|
@ -0,0 +1,88 @@
|
|||
{% extends "base.html" %}
|
||||
|
||||
{% block title %}{{ error_code }} Error{% endblock %}
|
||||
|
||||
{% block content %}
|
||||
<style>
|
||||
.error-container {
|
||||
max-width: 600px;
|
||||
margin: 4rem auto;
|
||||
padding: 2rem;
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
.error-code {
|
||||
font-size: 6rem;
|
||||
font-weight: bold;
|
||||
color: var(--ring);
|
||||
margin-bottom: 1rem;
|
||||
line-height: 1;
|
||||
}
|
||||
|
||||
.error-message {
|
||||
font-size: 1.5rem;
|
||||
font-weight: 500;
|
||||
color: var(--text);
|
||||
margin-bottom: 2rem;
|
||||
}
|
||||
|
||||
.error-actions {
|
||||
display: flex;
|
||||
gap: 1rem;
|
||||
justify-content: center;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
|
||||
.error-btn {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
gap: 0.5rem;
|
||||
padding: 0.75rem 1.5rem;
|
||||
background: var(--ring);
|
||||
color: white;
|
||||
text-decoration: none;
|
||||
border-radius: 8px;
|
||||
font-weight: 500;
|
||||
transition: all 0.2s;
|
||||
}
|
||||
|
||||
.error-btn:hover {
|
||||
opacity: 0.9;
|
||||
transform: translateY(-1px);
|
||||
}
|
||||
|
||||
.error-btn-secondary {
|
||||
background: var(--panel);
|
||||
color: var(--text);
|
||||
border: 1px solid var(--border);
|
||||
}
|
||||
|
||||
.error-btn-secondary:hover {
|
||||
background: var(--border);
|
||||
}
|
||||
</style>
|
||||
|
||||
<div class="error-container">
|
||||
<div class="error-code">{{ error_code }}</div>
|
||||
|
||||
<div class="error-message">{{ error_message }}</div>
|
||||
|
||||
<div class="error-actions">
|
||||
{% if back_link %}
|
||||
<a href="{{ back_link }}" class="error-btn">
|
||||
<svg width="20" height="20" viewBox="0 0 20 20" fill="currentColor">
|
||||
<path d="M12.707 5.293a1 1 0 010 1.414L9.414 10l3.293 3.293a1 1 0 01-1.414 1.414l-4-4a1 1 0 010-1.414l4-4a1 1 0 011.414 0z"/>
|
||||
</svg>
|
||||
{{ back_text if back_text else "Go Back" }}
|
||||
</a>
|
||||
{% endif %}
|
||||
|
||||
<a href="/" class="error-btn error-btn-secondary">
|
||||
<svg width="20" height="20" viewBox="0 0 20 20" fill="currentColor">
|
||||
<path d="M10.707 2.293a1 1 0 00-1.414 0l-7 7a1 1 0 001.414 1.414L4 10.414V17a1 1 0 001 1h2a1 1 0 001-1v-2a1 1 0 011-1h2a1 1 0 011 1v2a1 1 0 001 1h2a1 1 0 001-1v-6.586l.293.293a1 1 0 001.414-1.414l-7-7z"/>
|
||||
</svg>
|
||||
Go Home
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
{% endblock %}
|
||||
|
|
@ -47,6 +47,25 @@
|
|||
<button type="button" id="btn-refresh-themes" class="action-btn" onclick="refreshThemes()">Refresh Themes Only</button>
|
||||
<button type="button" id="btn-rebuild-cards" class="action-btn" onclick="rebuildCards()">Rebuild Card Files</button>
|
||||
</div>
|
||||
|
||||
{% if similarity_enabled %}
|
||||
<details style="margin-top:1.25rem;" open>
|
||||
<summary>Similarity Cache Status</summary>
|
||||
<div id="similarity-status" style="margin-top:.5rem; padding:1rem; border:1px solid var(--border); background:#0f1115; border-radius:8px;">
|
||||
<div class="muted">Status:</div>
|
||||
<div id="similarity-status-line" style="margin-top:.25rem;">Checking…</div>
|
||||
<div class="muted" id="similarity-meta-line" style="margin-top:.25rem; display:none;"></div>
|
||||
<div class="muted" id="similarity-warning-line" style="margin-top:.25rem; display:none; color:#f59e0b;"></div>
|
||||
</div>
|
||||
</details>
|
||||
<div style="margin-top:.75rem; display:flex; gap:.5rem; flex-wrap:wrap;">
|
||||
<button type="button" id="btn-build-similarity" class="action-btn" onclick="buildSimilarityCache()">Build Similarity Cache</button>
|
||||
<label class="muted" style="align-self:center; font-size:.85rem;">
|
||||
<input type="checkbox" id="chk-skip-download" /> Skip GitHub download (build locally)
|
||||
</label>
|
||||
<span class="muted" style="align-self:center; font-size:.85rem;">(~15-20 min local, instant if cached on GitHub)</span>
|
||||
</div>
|
||||
{% endif %}
|
||||
</section>
|
||||
<script>
|
||||
(function(){
|
||||
|
|
@ -239,6 +258,123 @@
|
|||
}, 2000);
|
||||
});
|
||||
};
|
||||
|
||||
// Similarity cache status polling
|
||||
{% if similarity_enabled %}
|
||||
function pollSimilarityStatus(){
|
||||
fetch('/status/similarity', { cache: 'no-store' })
|
||||
.then(function(r){ return r.json(); })
|
||||
.then(function(data){
|
||||
var line = document.getElementById('similarity-status-line');
|
||||
var metaLine = document.getElementById('similarity-meta-line');
|
||||
var warnLine = document.getElementById('similarity-warning-line');
|
||||
if (!line) return;
|
||||
|
||||
if (data.exists && data.valid) {
|
||||
var cardCount = data.card_count ? data.card_count.toLocaleString() : '?';
|
||||
var sizeMB = data.size_mb ? data.size_mb.toFixed(1) : '?';
|
||||
var ageDays = data.age_days !== null ? data.age_days.toFixed(1) : '?';
|
||||
|
||||
line.textContent = 'Cache exists and is valid';
|
||||
line.style.color = '#34d399';
|
||||
|
||||
if (metaLine) {
|
||||
metaLine.style.display = '';
|
||||
metaLine.textContent = cardCount + ' cards cached • ' + sizeMB + ' MB • ' + ageDays + ' days old';
|
||||
}
|
||||
|
||||
if (warnLine && data.needs_refresh) {
|
||||
warnLine.style.display = '';
|
||||
warnLine.textContent = '⚠ Cache is ' + ageDays + ' days old. Consider rebuilding for fresher data.';
|
||||
} else if (warnLine) {
|
||||
warnLine.style.display = 'none';
|
||||
}
|
||||
} else if (data.exists && !data.valid) {
|
||||
line.textContent = 'Cache file is invalid or corrupted';
|
||||
line.style.color = '#f87171';
|
||||
if (metaLine) metaLine.style.display = 'none';
|
||||
if (warnLine) {
|
||||
warnLine.style.display = '';
|
||||
warnLine.textContent = '⚠ Rebuild cache to fix.';
|
||||
}
|
||||
} else {
|
||||
line.textContent = 'No cache found';
|
||||
line.style.color = '#94a3b8';
|
||||
if (metaLine) metaLine.style.display = 'none';
|
||||
if (warnLine) {
|
||||
warnLine.style.display = '';
|
||||
warnLine.textContent = 'ℹ Build cache to enable similar card features.';
|
||||
}
|
||||
}
|
||||
})
|
||||
.catch(function(){});
|
||||
}
|
||||
|
||||
window.buildSimilarityCache = function(){
|
||||
var btn = document.getElementById('btn-build-similarity');
|
||||
var skipDownloadCheckbox = document.getElementById('chk-skip-download');
|
||||
if (!btn) return;
|
||||
|
||||
var skipDownload = skipDownloadCheckbox && skipDownloadCheckbox.checked;
|
||||
var confirmMsg = skipDownload
|
||||
? 'Build similarity cache locally for ~30k cards? This will take approximately 15-20 minutes and uses parallel processing.'
|
||||
: 'Build similarity cache? This will first try to download a pre-built cache from GitHub (instant), or build locally if unavailable (~15-20 minutes).';
|
||||
|
||||
if (!confirm(confirmMsg)) {
|
||||
return;
|
||||
}
|
||||
|
||||
btn.disabled = true;
|
||||
btn.textContent = 'Building... (check terminal for progress)';
|
||||
|
||||
var body = skipDownload ? JSON.stringify({ skip_download: true }) : '{}';
|
||||
|
||||
fetch('/similarity/build', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: body
|
||||
})
|
||||
.then(function(r){
|
||||
if (!r.ok) throw new Error('Build failed');
|
||||
return r.json();
|
||||
})
|
||||
.then(function(data){
|
||||
if (data.success) {
|
||||
btn.textContent = 'Build Started! Check terminal for progress...';
|
||||
// Poll status more frequently while building
|
||||
var pollCount = 0;
|
||||
var buildPoll = setInterval(function(){
|
||||
pollSimilarityStatus();
|
||||
pollCount++;
|
||||
// Stop intensive polling after 2 minutes, rely on normal polling
|
||||
if (pollCount > 40) clearInterval(buildPoll);
|
||||
}, 3000);
|
||||
|
||||
setTimeout(function(){
|
||||
btn.textContent = 'Build Similarity Cache';
|
||||
btn.disabled = false;
|
||||
}, 8000);
|
||||
} else {
|
||||
btn.textContent = 'Build Failed: ' + (data.error || 'Unknown error');
|
||||
setTimeout(function(){
|
||||
btn.textContent = 'Build Similarity Cache';
|
||||
btn.disabled = false;
|
||||
}, 3000);
|
||||
}
|
||||
})
|
||||
.catch(function(err){
|
||||
btn.textContent = 'Build Failed';
|
||||
setTimeout(function(){
|
||||
btn.textContent = 'Build Similarity Cache';
|
||||
btn.disabled = false;
|
||||
}, 3000);
|
||||
});
|
||||
};
|
||||
|
||||
pollSimilarityStatus();
|
||||
setInterval(pollSimilarityStatus, 10000); // Poll every 10s
|
||||
{% endif %}
|
||||
|
||||
setInterval(poll, 3000);
|
||||
poll();
|
||||
pollThemes();
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue