overhaul: migrated to tailwind css for css management, consolidated custom css, removed inline css, removed unneeded css, and otherwise improved page styling

This commit is contained in:
matt 2025-10-28 08:21:52 -07:00
parent f1e21873e7
commit b994978f60
81 changed files with 15784 additions and 2936 deletions

View file

@ -1,22 +1,18 @@
"""Loader for background cards derived from `background_cards.csv`."""
"""Loader for background cards derived from all_cards.parquet."""
from __future__ import annotations
import ast
import csv
import re
from dataclasses import dataclass
from functools import lru_cache
from pathlib import Path
import re
from typing import Mapping, Tuple
from typing import Any, Mapping, Tuple
from logging_util import get_logger
from deck_builder.partner_background_utils import analyze_partner_background
from path_util import csv_dir
LOGGER = get_logger(__name__)
BACKGROUND_FILENAME = "background_cards.csv"
@dataclass(frozen=True, slots=True)
class BackgroundCard:
@ -57,7 +53,7 @@ class BackgroundCatalog:
def load_background_cards(
source_path: str | Path | None = None,
) -> BackgroundCatalog:
"""Load and cache background card data."""
"""Load and cache background card data from all_cards.parquet."""
resolved = _resolve_background_path(source_path)
try:
@ -65,7 +61,7 @@ def load_background_cards(
mtime_ns = getattr(stat, "st_mtime_ns", int(stat.st_mtime * 1_000_000_000))
size = stat.st_size
except FileNotFoundError:
raise FileNotFoundError(f"Background CSV not found at {resolved}") from None
raise FileNotFoundError(f"Background data not found at {resolved}") from None
entries, version = _load_background_cards_cached(str(resolved), mtime_ns)
etag = f"{size}-{mtime_ns}-{len(entries)}"
@ -88,46 +84,49 @@ def _load_background_cards_cached(path_str: str, mtime_ns: int) -> Tuple[Tuple[B
if not path.exists():
return tuple(), "unknown"
with path.open("r", encoding="utf-8", newline="") as handle:
first_line = handle.readline()
version = "unknown"
if first_line.startswith("#"):
version = _parse_version(first_line)
else:
handle.seek(0)
reader = csv.DictReader(handle)
if reader.fieldnames is None:
return tuple(), version
entries = _rows_to_cards(reader)
try:
import pandas as pd
df = pd.read_parquet(path, engine="pyarrow")
# Filter for background cards
if 'isBackground' not in df.columns:
LOGGER.warning("isBackground column not found in %s", path)
return tuple(), "unknown"
df_backgrounds = df[df['isBackground']].copy()
if len(df_backgrounds) == 0:
LOGGER.warning("No background cards found in %s", path)
return tuple(), "unknown"
entries = _rows_to_cards(df_backgrounds)
version = "parquet"
except Exception as e:
LOGGER.error("Failed to load backgrounds from %s: %s", path, e)
return tuple(), "unknown"
frozen = tuple(entries)
return frozen, version
def _resolve_background_path(override: str | Path | None) -> Path:
"""Resolve path to all_cards.parquet."""
if override:
return Path(override).resolve()
return (Path(csv_dir()) / BACKGROUND_FILENAME).resolve()
# Use card_files/processed/all_cards.parquet
return Path("card_files/processed/all_cards.parquet").resolve()
def _parse_version(line: str) -> str:
tokens = line.lstrip("# ").strip().split()
for token in tokens:
if "=" not in token:
continue
key, value = token.split("=", 1)
if key == "version":
return value
return "unknown"
def _rows_to_cards(reader: csv.DictReader) -> list[BackgroundCard]:
def _rows_to_cards(df) -> list[BackgroundCard]:
"""Convert DataFrame rows to BackgroundCard objects."""
entries: list[BackgroundCard] = []
seen: set[str] = set()
for raw in reader:
if not raw:
for _, row in df.iterrows():
if row.empty:
continue
card = _row_to_card(raw)
card = _row_to_card(row)
if card is None:
continue
key = card.display_name.lower()
@ -135,20 +134,35 @@ def _rows_to_cards(reader: csv.DictReader) -> list[BackgroundCard]:
continue
seen.add(key)
entries.append(card)
entries.sort(key=lambda card: card.display_name)
return entries
def _row_to_card(row: Mapping[str, str]) -> BackgroundCard | None:
name = _clean_str(row.get("name"))
face_name = _clean_str(row.get("faceName")) or None
def _row_to_card(row) -> BackgroundCard | None:
"""Convert a DataFrame row to a BackgroundCard."""
# Helper to safely get values from DataFrame row
def get_val(key: str):
try:
if hasattr(row, key):
val = getattr(row, key)
# Handle pandas NA/None
if val is None or (hasattr(val, '__class__') and 'NA' in val.__class__.__name__):
return None
return val
return None
except Exception:
return None
name = _clean_str(get_val("name"))
face_name = _clean_str(get_val("faceName")) or None
display = face_name or name
if not display:
return None
type_line = _clean_str(row.get("type"))
oracle_text = _clean_multiline(row.get("text"))
raw_theme_tags = tuple(_parse_literal_list(row.get("themeTags")))
type_line = _clean_str(get_val("type"))
oracle_text = _clean_multiline(get_val("text"))
raw_theme_tags = tuple(_parse_literal_list(get_val("themeTags")))
detection = analyze_partner_background(type_line, oracle_text, raw_theme_tags)
if not detection.is_background:
return None
@ -158,18 +172,18 @@ def _row_to_card(row: Mapping[str, str]) -> BackgroundCard | None:
face_name=face_name,
display_name=display,
slug=_slugify(display),
color_identity=_parse_color_list(row.get("colorIdentity")),
colors=_parse_color_list(row.get("colors")),
mana_cost=_clean_str(row.get("manaCost")),
mana_value=_parse_float(row.get("manaValue")),
color_identity=_parse_color_list(get_val("colorIdentity")),
colors=_parse_color_list(get_val("colors")),
mana_cost=_clean_str(get_val("manaCost")),
mana_value=_parse_float(get_val("manaValue")),
type_line=type_line,
oracle_text=oracle_text,
keywords=tuple(_split_list(row.get("keywords"))),
keywords=tuple(_split_list(get_val("keywords"))),
theme_tags=tuple(tag for tag in raw_theme_tags if tag),
raw_theme_tags=raw_theme_tags,
edhrec_rank=_parse_int(row.get("edhrecRank")),
layout=_clean_str(row.get("layout")) or "normal",
side=_clean_str(row.get("side")) or None,
edhrec_rank=_parse_int(get_val("edhrecRank")),
layout=_clean_str(get_val("layout")) or "normal",
side=_clean_str(get_val("side")) or None,
)
@ -189,8 +203,19 @@ def _clean_multiline(value: object) -> str:
def _parse_literal_list(value: object) -> list[str]:
if value is None:
return []
if isinstance(value, (list, tuple, set)):
# Check if it's a numpy array (from Parquet/pandas)
is_numpy = False
try:
import numpy as np
is_numpy = isinstance(value, np.ndarray)
except ImportError:
pass
# Handle lists, tuples, sets, and numpy arrays
if isinstance(value, (list, tuple, set)) or is_numpy:
return [str(item).strip() for item in value if str(item).strip()]
text = str(value).strip()
if not text:
return []
@ -205,6 +230,17 @@ def _parse_literal_list(value: object) -> list[str]:
def _split_list(value: object) -> list[str]:
# Check if it's a numpy array (from Parquet/pandas)
is_numpy = False
try:
import numpy as np
is_numpy = isinstance(value, np.ndarray)
except ImportError:
pass
if isinstance(value, (list, tuple, set)) or is_numpy:
return [str(item).strip() for item in value if str(item).strip()]
text = _clean_str(value)
if not text:
return []
@ -213,6 +249,18 @@ def _split_list(value: object) -> list[str]:
def _parse_color_list(value: object) -> Tuple[str, ...]:
# Check if it's a numpy array (from Parquet/pandas)
is_numpy = False
try:
import numpy as np
is_numpy = isinstance(value, np.ndarray)
except ImportError:
pass
if isinstance(value, (list, tuple, set)) or is_numpy:
parts = [str(item).strip().upper() for item in value if str(item).strip()]
return tuple(parts)
text = _clean_str(value)
if not text:
return tuple()