cleanup: removed unneeded debug scripts that were accidentally left behind

This commit is contained in:
matt 2025-09-10 07:42:03 -07:00
parent fe220c53f3
commit 6fe8a7af89
6 changed files with 0 additions and 213 deletions

View file

@ -1,52 +0,0 @@
#!/usr/bin/env python3
"""
Check for banned cards in our popular/iconic card lists.
"""
from code.file_setup.setup_constants import BANNED_CARDS
from code.deck_builder.builder_constants import POPULAR_CARDS, ICONIC_CARDS
def check_banned_overlap():
"""Check which cards in our lists are banned in Commander."""
# Convert banned cards to set for faster lookup
banned_set = set(BANNED_CARDS)
print("Checking for banned cards in our card priority lists...")
print("=" * 60)
# Check POPULAR_CARDS
popular_banned = POPULAR_CARDS & banned_set
print(f"POPULAR_CARDS ({len(POPULAR_CARDS)} total):")
if popular_banned:
print("❌ Found banned cards:")
for card in sorted(popular_banned):
print(f" - {card}")
else:
print("✅ No banned cards found")
print()
# Check ICONIC_CARDS
iconic_banned = ICONIC_CARDS & banned_set
print(f"ICONIC_CARDS ({len(ICONIC_CARDS)} total):")
if iconic_banned:
print("❌ Found banned cards:")
for card in sorted(iconic_banned):
print(f" - {card}")
else:
print("✅ No banned cards found")
print()
# Summary
all_banned = popular_banned | iconic_banned
if all_banned:
print(f"SUMMARY: Found {len(all_banned)} banned cards that need to be removed:")
for card in sorted(all_banned):
print(f" - {card}")
return list(all_banned)
else:
print("✅ No banned cards found in either list!")
return []
if __name__ == "__main__":
banned_found = check_banned_overlap()

View file

@ -1,54 +0,0 @@
#!/usr/bin/env python3
"""Debug the normalization and scoring for Lightning Bolt specifically"""
import sys
import os
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'code'))
from deck_builder.include_exclude_utils import normalize_punctuation, fuzzy_match_card_name
import pandas as pd
# Test normalize_punctuation function
print("=== Testing normalize_punctuation ===")
test_names = ["Lightning Bolt", "lightning bolt", "Lightning-Bolt", "Lightning, Bolt"]
for name in test_names:
normalized = normalize_punctuation(name)
print(f"'{name}''{normalized}'")
# Load cards and test fuzzy matching
print(f"\n=== Loading cards ===")
cards_df = pd.read_csv('csv_files/cards.csv')
available_cards = set(cards_df['name'].dropna().unique())
print(f"Cards loaded: {len(available_cards)}")
print(f"Lightning Bolt in cards: {'Lightning Bolt' in available_cards}")
# Test fuzzy matching for 'bolt'
print(f"\n=== Testing fuzzy match for 'bolt' ===")
result = fuzzy_match_card_name('bolt', available_cards)
print(f"Input: bolt")
print(f"Matched: {result.matched_name}")
print(f"Confidence: {result.confidence:.3f}")
print(f"Auto-accepted: {result.auto_accepted}")
print(f"Top suggestions: {result.suggestions[:5]}")
# Test fuzzy matching for 'lightn'
print(f"\n=== Testing fuzzy match for 'lightn' ===")
result = fuzzy_match_card_name('lightn', available_cards)
print(f"Input: lightn")
print(f"Matched: {result.matched_name}")
print(f"Confidence: {result.confidence:.3f}")
print(f"Auto-accepted: {result.auto_accepted}")
print(f"Top suggestions: {result.suggestions[:5]}")
# Manual check of scores for Lightning cards
print(f"\n=== Manual scoring for Lightning cards ===")
from difflib import SequenceMatcher
input_test = "lightn"
lightning_cards = [name for name in available_cards if 'lightning' in name.lower()][:10]
for card in lightning_cards:
normalized_card = normalize_punctuation(card)
score = SequenceMatcher(None, input_test.lower(), normalized_card.lower()).ratio()
print(f"{score:.3f} - {card}")

View file

@ -1,30 +0,0 @@
#!/usr/bin/env python3
"""Debug the confirmation_needed response structure"""
import requests
import json
test_data = {
"include_cards": "lightn",
"exclude_cards": "",
"commander": "",
"enforcement_mode": "warn",
"allow_illegal": "false",
"fuzzy_matching": "true"
}
response = requests.post(
"http://localhost:8080/build/validate/include_exclude",
data=test_data,
timeout=10
)
if response.status_code == 200:
data = response.json()
print("Full response:")
print(json.dumps(data, indent=2))
print("\nConfirmation needed items:")
for i, item in enumerate(data.get('confirmation_needed', [])):
print(f"Item {i}: {json.dumps(item, indent=2)}")
else:
print(f"HTTP {response.status_code}: {response.text}")

View file

@ -1,42 +0,0 @@
#!/usr/bin/env python3
"""Debug what Lightning cards are in the dataset"""
import pandas as pd
# Load the cards CSV
cards_df = pd.read_csv('csv_files/cards.csv')
print(f"Total cards loaded: {len(cards_df)}")
# Find cards that contain "light" (case insensitive)
light_cards = cards_df[cards_df['name'].str.contains('light', case=False, na=False)]['name'].unique()
print(f"\nCards containing 'light': {len(light_cards)}")
for card in sorted(light_cards)[:20]: # Show first 20
print(f" - {card}")
# Find cards that start with "light"
light_start = cards_df[cards_df['name'].str.lower().str.startswith('light', na=False)]['name'].unique()
print(f"\nCards starting with 'Light': {len(light_start)}")
for card in sorted(light_start):
print(f" - {card}")
# Find specific Lightning cards
lightning_cards = cards_df[cards_df['name'].str.contains('lightning', case=False, na=False)]['name'].unique()
print(f"\nCards containing 'Lightning': {len(lightning_cards)}")
for card in sorted(lightning_cards):
print(f" - {card}")
print(f"\nTesting direct matches for 'lightn':")
test_input = "lightn"
candidates = []
for name in cards_df['name'].dropna().unique():
# Test similarity to lightn
from difflib import SequenceMatcher
similarity = SequenceMatcher(None, test_input.lower(), name.lower()).ratio()
if similarity > 0.6:
candidates.append((similarity, name))
# Sort by similarity
candidates.sort(key=lambda x: x[0], reverse=True)
print("Top 10 matches for 'lightn':")
for score, name in candidates[:10]:
print(f" {score:.3f} - {name}")

View file

@ -1,35 +0,0 @@
#!/usr/bin/env python3
"""Debug what specific Lightning/Bolt cards exist"""
import pandas as pd
cards_df = pd.read_csv('csv_files/cards.csv')
print("=== Lightning cards that start with 'Light' ===")
lightning_prefix = cards_df[cards_df['name'].str.lower().str.startswith('lightning', na=False)]['name'].unique()
for card in sorted(lightning_prefix):
print(f" - {card}")
print(f"\n=== Cards containing 'bolt' ===")
bolt_cards = cards_df[cards_df['name'].str.contains('bolt', case=False, na=False)]['name'].unique()
for card in sorted(bolt_cards):
print(f" - {card}")
print(f"\n=== Cards containing 'warp' ===")
warp_cards = cards_df[cards_df['name'].str.contains('warp', case=False, na=False)]['name'].unique()
for card in sorted(warp_cards):
print(f" - {card}")
print(f"\n=== Manual test of 'lightn' against Lightning cards ===")
test_input = "lightn"
lightning_scores = []
from difflib import SequenceMatcher
for card in lightning_prefix:
score = SequenceMatcher(None, test_input.lower(), card.lower()).ratio()
lightning_scores.append((score, card))
lightning_scores.sort(key=lambda x: x[0], reverse=True)
print("Top Lightning matches for 'lightn':")
for score, card in lightning_scores[:5]:
print(f" {score:.3f} - {card}")