mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 06:00:56 +02:00

* refactor: re-purpose `resendImages` as `resendFiles` * refactor: re-purpose `resendImages` as `resendFiles` * feat: upload general files * feat: embed file during upload * feat: delete file embeddings on file deletion * chore(fileConfig): add epub+zip type * feat(encodeAndFormat): handle non-image files * feat(createContextHandlers): build context prompt from file attachments and successful RAG * fix: prevent non-temp files as well as embedded files to be deleted on new conversation * fix: remove temp_file_id on usage, prevent non-temp files as well as embedded files to be deleted on new conversation * fix: prevent non-temp files as well as embedded files to be deleted on new conversation * feat(OpenAI/Anthropic/Google): basic RAG support * fix: delete `resendFiles` only when true (Default) * refactor(RAG): update endpoints and pass JWT * fix(resendFiles): default values * fix(context/processFile): query unique ids only * feat: rag-api.yaml * feat: file upload improved ux for longer uploads * chore: await embed call and catch embedding errors * refactor: store augmentedPrompt in Client * refactor(processFileUpload): throw error if not assistant file upload * fix(useFileHandling): handle markdown empty mimetype issue * chore: necessary compose file changes
668 lines
21 KiB
JavaScript
668 lines
21 KiB
JavaScript
const Anthropic = require('@anthropic-ai/sdk');
|
|
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
|
|
const {
|
|
getResponseSender,
|
|
EModelEndpoint,
|
|
validateVisionModel,
|
|
} = require('librechat-data-provider');
|
|
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
|
|
const { formatMessage, createContextHandlers } = require('./prompts');
|
|
const spendTokens = require('~/models/spendTokens');
|
|
const { getModelMaxTokens } = require('~/utils');
|
|
const BaseClient = require('./BaseClient');
|
|
const { logger } = require('~/config');
|
|
|
|
const HUMAN_PROMPT = '\n\nHuman:';
|
|
const AI_PROMPT = '\n\nAssistant:';
|
|
|
|
const tokenizersCache = {};
|
|
|
|
/** Helper function to introduce a delay before retrying */
|
|
function delayBeforeRetry(attempts, baseDelay = 1000) {
|
|
return new Promise((resolve) => setTimeout(resolve, baseDelay * attempts));
|
|
}
|
|
|
|
class AnthropicClient extends BaseClient {
|
|
constructor(apiKey, options = {}) {
|
|
super(apiKey, options);
|
|
this.apiKey = apiKey || process.env.ANTHROPIC_API_KEY;
|
|
this.userLabel = HUMAN_PROMPT;
|
|
this.assistantLabel = AI_PROMPT;
|
|
this.contextStrategy = options.contextStrategy
|
|
? options.contextStrategy.toLowerCase()
|
|
: 'discard';
|
|
this.setOptions(options);
|
|
}
|
|
|
|
setOptions(options) {
|
|
if (this.options && !this.options.replaceOptions) {
|
|
// nested options aren't spread properly, so we need to do this manually
|
|
this.options.modelOptions = {
|
|
...this.options.modelOptions,
|
|
...options.modelOptions,
|
|
};
|
|
delete options.modelOptions;
|
|
// now we can merge options
|
|
this.options = {
|
|
...this.options,
|
|
...options,
|
|
};
|
|
} else {
|
|
this.options = options;
|
|
}
|
|
|
|
const modelOptions = this.options.modelOptions || {};
|
|
this.modelOptions = {
|
|
...modelOptions,
|
|
// set some good defaults (check for undefined in some cases because they may be 0)
|
|
model: modelOptions.model || 'claude-1',
|
|
temperature: typeof modelOptions.temperature === 'undefined' ? 1 : modelOptions.temperature, // 0 - 1, 1 is default
|
|
topP: typeof modelOptions.topP === 'undefined' ? 0.7 : modelOptions.topP, // 0 - 1, default: 0.7
|
|
topK: typeof modelOptions.topK === 'undefined' ? 40 : modelOptions.topK, // 1-40, default: 40
|
|
stop: modelOptions.stop, // no stop method for now
|
|
};
|
|
|
|
this.isClaude3 = this.modelOptions.model.includes('claude-3');
|
|
this.useMessages = this.isClaude3 || !!this.options.attachments;
|
|
|
|
this.defaultVisionModel = this.options.visionModel ?? 'claude-3-sonnet-20240229';
|
|
this.options.attachments?.then((attachments) => this.checkVisionRequest(attachments));
|
|
|
|
this.maxContextTokens =
|
|
getModelMaxTokens(this.modelOptions.model, EModelEndpoint.anthropic) ?? 100000;
|
|
this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1500;
|
|
this.maxPromptTokens =
|
|
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
|
|
|
|
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
|
|
throw new Error(
|
|
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
|
|
this.maxPromptTokens + this.maxResponseTokens
|
|
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
|
|
);
|
|
}
|
|
|
|
this.sender =
|
|
this.options.sender ??
|
|
getResponseSender({
|
|
model: this.modelOptions.model,
|
|
endpoint: EModelEndpoint.anthropic,
|
|
modelLabel: this.options.modelLabel,
|
|
});
|
|
|
|
this.startToken = '||>';
|
|
this.endToken = '';
|
|
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
|
|
|
|
if (!this.modelOptions.stop) {
|
|
const stopTokens = [this.startToken];
|
|
if (this.endToken && this.endToken !== this.startToken) {
|
|
stopTokens.push(this.endToken);
|
|
}
|
|
stopTokens.push(`${this.userLabel}`);
|
|
stopTokens.push('<|diff_marker|>');
|
|
|
|
this.modelOptions.stop = stopTokens;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getClient() {
|
|
const options = {
|
|
apiKey: this.apiKey,
|
|
};
|
|
|
|
if (this.options.reverseProxyUrl) {
|
|
options.baseURL = this.options.reverseProxyUrl;
|
|
}
|
|
|
|
return new Anthropic(options);
|
|
}
|
|
|
|
getTokenCountForResponse(response) {
|
|
return this.getTokenCountForMessage({
|
|
role: 'assistant',
|
|
content: response.text,
|
|
});
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
|
|
* - Sets `this.modelOptions.model` to `gpt-4-vision-preview` if the request is a vision request.
|
|
* - Sets `this.isVisionModel` to `true` if vision request.
|
|
* - Deletes `this.modelOptions.stop` if vision request.
|
|
* @param {MongoFile[]} attachments
|
|
*/
|
|
checkVisionRequest(attachments) {
|
|
const availableModels = this.options.modelsConfig?.[EModelEndpoint.anthropic];
|
|
this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
|
|
|
|
const visionModelAvailable = availableModels?.includes(this.defaultVisionModel);
|
|
if (
|
|
attachments &&
|
|
attachments.some((file) => file?.type && file?.type?.includes('image')) &&
|
|
visionModelAvailable &&
|
|
!this.isVisionModel
|
|
) {
|
|
this.modelOptions.model = this.defaultVisionModel;
|
|
this.isVisionModel = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate the token cost in tokens for an image based on its dimensions and detail level.
|
|
*
|
|
* For reference, see: https://docs.anthropic.com/claude/docs/vision#image-costs
|
|
*
|
|
* @param {Object} image - The image object.
|
|
* @param {number} image.width - The width of the image.
|
|
* @param {number} image.height - The height of the image.
|
|
* @returns {number} The calculated token cost measured by tokens.
|
|
*
|
|
*/
|
|
calculateImageTokenCost({ width, height }) {
|
|
return Math.ceil((width * height) / 750);
|
|
}
|
|
|
|
async addImageURLs(message, attachments) {
|
|
const { files, image_urls } = await encodeAndFormat(
|
|
this.options.req,
|
|
attachments,
|
|
EModelEndpoint.anthropic,
|
|
);
|
|
message.image_urls = image_urls.length ? image_urls : undefined;
|
|
return files;
|
|
}
|
|
|
|
async recordTokenUsage({ promptTokens, completionTokens }) {
|
|
logger.debug('[AnthropicClient] recordTokenUsage:', { promptTokens, completionTokens });
|
|
await spendTokens(
|
|
{
|
|
user: this.user,
|
|
model: this.modelOptions.model,
|
|
context: 'message',
|
|
conversationId: this.conversationId,
|
|
endpointTokenConfig: this.options.endpointTokenConfig,
|
|
},
|
|
{ promptTokens, completionTokens },
|
|
);
|
|
}
|
|
|
|
async buildMessages(messages, parentMessageId) {
|
|
const orderedMessages = this.constructor.getMessagesForConversation({
|
|
messages,
|
|
parentMessageId,
|
|
});
|
|
|
|
logger.debug('[AnthropicClient] orderedMessages', { orderedMessages, parentMessageId });
|
|
|
|
if (this.options.attachments) {
|
|
const attachments = await this.options.attachments;
|
|
const images = attachments.filter((file) => file.type.includes('image'));
|
|
|
|
if (images.length && !this.isVisionModel) {
|
|
throw new Error('Images are only supported with the Claude 3 family of models');
|
|
}
|
|
|
|
const latestMessage = orderedMessages[orderedMessages.length - 1];
|
|
|
|
if (this.message_file_map) {
|
|
this.message_file_map[latestMessage.messageId] = attachments;
|
|
} else {
|
|
this.message_file_map = {
|
|
[latestMessage.messageId]: attachments,
|
|
};
|
|
}
|
|
|
|
const files = await this.addImageURLs(latestMessage, attachments);
|
|
|
|
this.options.attachments = files;
|
|
}
|
|
|
|
if (this.message_file_map) {
|
|
this.contextHandlers = createContextHandlers(
|
|
this.options.req,
|
|
orderedMessages[orderedMessages.length - 1].text,
|
|
);
|
|
}
|
|
|
|
const formattedMessages = orderedMessages.map((message, i) => {
|
|
const formattedMessage = this.useMessages
|
|
? formatMessage({
|
|
message,
|
|
endpoint: EModelEndpoint.anthropic,
|
|
})
|
|
: {
|
|
author: message.isCreatedByUser ? this.userLabel : this.assistantLabel,
|
|
content: message?.content ?? message.text,
|
|
};
|
|
|
|
const needsTokenCount = this.contextStrategy && !orderedMessages[i].tokenCount;
|
|
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
|
|
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
|
|
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
|
|
}
|
|
|
|
/* If message has files, calculate image token cost */
|
|
if (this.message_file_map && this.message_file_map[message.messageId]) {
|
|
const attachments = this.message_file_map[message.messageId];
|
|
for (const file of attachments) {
|
|
if (file.embedded) {
|
|
this.contextHandlers?.processFile(file);
|
|
continue;
|
|
}
|
|
|
|
orderedMessages[i].tokenCount += this.calculateImageTokenCost({
|
|
width: file.width,
|
|
height: file.height,
|
|
});
|
|
}
|
|
}
|
|
|
|
formattedMessage.tokenCount = orderedMessages[i].tokenCount;
|
|
return formattedMessage;
|
|
});
|
|
|
|
if (this.contextHandlers) {
|
|
this.augmentedPrompt = await this.contextHandlers.createContext();
|
|
this.options.promptPrefix = this.augmentedPrompt + (this.options.promptPrefix ?? '');
|
|
}
|
|
|
|
let { context: messagesInWindow, remainingContextTokens } =
|
|
await this.getMessagesWithinTokenLimit(formattedMessages);
|
|
|
|
const tokenCountMap = orderedMessages
|
|
.slice(orderedMessages.length - messagesInWindow.length)
|
|
.reduce((map, message, index) => {
|
|
const { messageId } = message;
|
|
if (!messageId) {
|
|
return map;
|
|
}
|
|
|
|
map[messageId] = orderedMessages[index].tokenCount;
|
|
return map;
|
|
}, {});
|
|
|
|
logger.debug('[AnthropicClient]', {
|
|
messagesInWindow: messagesInWindow.length,
|
|
remainingContextTokens,
|
|
});
|
|
|
|
let lastAuthor = '';
|
|
let groupedMessages = [];
|
|
|
|
for (let i = 0; i < messagesInWindow.length; i++) {
|
|
const message = messagesInWindow[i];
|
|
const author = message.role ?? message.author;
|
|
// If last author is not same as current author, add to new group
|
|
if (lastAuthor !== author) {
|
|
const newMessage = {
|
|
content: [message.content],
|
|
};
|
|
|
|
if (message.role) {
|
|
newMessage.role = message.role;
|
|
} else {
|
|
newMessage.author = message.author;
|
|
}
|
|
|
|
groupedMessages.push(newMessage);
|
|
lastAuthor = author;
|
|
// If same author, append content to the last group
|
|
} else {
|
|
groupedMessages[groupedMessages.length - 1].content.push(message.content);
|
|
}
|
|
}
|
|
|
|
groupedMessages = groupedMessages.map((msg, i) => {
|
|
const isLast = i === groupedMessages.length - 1;
|
|
if (msg.content.length === 1) {
|
|
const content = msg.content[0];
|
|
return {
|
|
...msg,
|
|
// reason: final assistant content cannot end with trailing whitespace
|
|
content:
|
|
isLast && this.useMessages && msg.role === 'assistant' && typeof content === 'string'
|
|
? content?.trim()
|
|
: content,
|
|
};
|
|
}
|
|
|
|
if (!this.useMessages && msg.tokenCount) {
|
|
delete msg.tokenCount;
|
|
}
|
|
|
|
return msg;
|
|
});
|
|
|
|
let identityPrefix = '';
|
|
if (this.options.userLabel) {
|
|
identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
|
|
}
|
|
|
|
if (this.options.modelLabel) {
|
|
identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
|
|
}
|
|
|
|
let promptPrefix = (this.options.promptPrefix || '').trim();
|
|
if (promptPrefix) {
|
|
// If the prompt prefix doesn't end with the end token, add it.
|
|
if (!promptPrefix.endsWith(`${this.endToken}`)) {
|
|
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
|
|
}
|
|
promptPrefix = `\nContext:\n${promptPrefix}`;
|
|
}
|
|
|
|
if (identityPrefix) {
|
|
promptPrefix = `${identityPrefix}${promptPrefix}`;
|
|
}
|
|
|
|
// Prompt AI to respond, empty if last message was from AI
|
|
let isEdited = lastAuthor === this.assistantLabel;
|
|
const promptSuffix = isEdited ? '' : `${promptPrefix}${this.assistantLabel}\n`;
|
|
let currentTokenCount =
|
|
isEdited || this.useMessages
|
|
? this.getTokenCount(promptPrefix)
|
|
: this.getTokenCount(promptSuffix);
|
|
|
|
let promptBody = '';
|
|
const maxTokenCount = this.maxPromptTokens;
|
|
|
|
const context = [];
|
|
|
|
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
|
|
// Do this within a recursive async function so that it doesn't block the event loop for too long.
|
|
// Also, remove the next message when the message that puts us over the token limit is created by the user.
|
|
// Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
|
|
const nextMessage = {
|
|
remove: false,
|
|
tokenCount: 0,
|
|
messageString: '',
|
|
};
|
|
|
|
const buildPromptBody = async () => {
|
|
if (currentTokenCount < maxTokenCount && groupedMessages.length > 0) {
|
|
const message = groupedMessages.pop();
|
|
const isCreatedByUser = message.author === this.userLabel;
|
|
// Use promptPrefix if message is edited assistant'
|
|
const messagePrefix =
|
|
isCreatedByUser || !isEdited ? message.author : `${promptPrefix}${message.author}`;
|
|
const messageString = `${messagePrefix}\n${message.content}${this.endToken}\n`;
|
|
let newPromptBody = `${messageString}${promptBody}`;
|
|
|
|
context.unshift(message);
|
|
|
|
const tokenCountForMessage = this.getTokenCount(messageString);
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
|
|
if (!isCreatedByUser) {
|
|
nextMessage.messageString = messageString;
|
|
nextMessage.tokenCount = tokenCountForMessage;
|
|
}
|
|
|
|
if (newTokenCount > maxTokenCount) {
|
|
if (!promptBody) {
|
|
// This is the first message, so we can't add it. Just throw an error.
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
}
|
|
|
|
// Otherwise, ths message would put us over the token limit, so don't add it.
|
|
// if created by user, remove next message, otherwise remove only this message
|
|
if (isCreatedByUser) {
|
|
nextMessage.remove = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
promptBody = newPromptBody;
|
|
currentTokenCount = newTokenCount;
|
|
|
|
// Switch off isEdited after using it for the first time
|
|
if (isEdited) {
|
|
isEdited = false;
|
|
}
|
|
|
|
// wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setImmediate(resolve));
|
|
return buildPromptBody();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
const messagesPayload = [];
|
|
const buildMessagesPayload = async () => {
|
|
let canContinue = true;
|
|
|
|
if (promptPrefix) {
|
|
this.systemMessage = promptPrefix;
|
|
}
|
|
|
|
while (currentTokenCount < maxTokenCount && groupedMessages.length > 0 && canContinue) {
|
|
const message = groupedMessages.pop();
|
|
|
|
let tokenCountForMessage = message.tokenCount ?? this.getTokenCountForMessage(message);
|
|
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
const exceededMaxCount = newTokenCount > maxTokenCount;
|
|
|
|
if (exceededMaxCount && messagesPayload.length === 0) {
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
} else if (exceededMaxCount) {
|
|
canContinue = false;
|
|
break;
|
|
}
|
|
|
|
delete message.tokenCount;
|
|
messagesPayload.unshift(message);
|
|
currentTokenCount = newTokenCount;
|
|
|
|
// Switch off isEdited after using it once
|
|
if (isEdited && message.role === 'assistant') {
|
|
isEdited = false;
|
|
}
|
|
|
|
// Wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setImmediate(resolve));
|
|
}
|
|
};
|
|
|
|
const processTokens = () => {
|
|
// Add 2 tokens for metadata after all messages have been counted.
|
|
currentTokenCount += 2;
|
|
|
|
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
|
|
this.modelOptions.maxOutputTokens = Math.min(
|
|
this.maxContextTokens - currentTokenCount,
|
|
this.maxResponseTokens,
|
|
);
|
|
};
|
|
|
|
if (this.modelOptions.model.startsWith('claude-3')) {
|
|
await buildMessagesPayload();
|
|
processTokens();
|
|
return {
|
|
prompt: messagesPayload,
|
|
context: messagesInWindow,
|
|
promptTokens: currentTokenCount,
|
|
tokenCountMap,
|
|
};
|
|
} else {
|
|
await buildPromptBody();
|
|
processTokens();
|
|
}
|
|
|
|
if (nextMessage.remove) {
|
|
promptBody = promptBody.replace(nextMessage.messageString, '');
|
|
currentTokenCount -= nextMessage.tokenCount;
|
|
context.shift();
|
|
}
|
|
|
|
let prompt = `${promptBody}${promptSuffix}`;
|
|
|
|
return { prompt, context, promptTokens: currentTokenCount, tokenCountMap };
|
|
}
|
|
|
|
getCompletion() {
|
|
logger.debug('AnthropicClient doesn\'t use getCompletion (all handled in sendCompletion)');
|
|
}
|
|
|
|
async createResponse(client, options) {
|
|
return this.useMessages
|
|
? await client.messages.create(options)
|
|
: await client.completions.create(options);
|
|
}
|
|
|
|
async sendCompletion(payload, { onProgress, abortController }) {
|
|
if (!abortController) {
|
|
abortController = new AbortController();
|
|
}
|
|
|
|
const { signal } = abortController;
|
|
|
|
const modelOptions = { ...this.modelOptions };
|
|
if (typeof onProgress === 'function') {
|
|
modelOptions.stream = true;
|
|
}
|
|
|
|
logger.debug('modelOptions', { modelOptions });
|
|
|
|
const client = this.getClient();
|
|
const metadata = {
|
|
user_id: this.user,
|
|
};
|
|
|
|
let text = '';
|
|
const {
|
|
stream,
|
|
model,
|
|
temperature,
|
|
maxOutputTokens,
|
|
stop: stop_sequences,
|
|
topP: top_p,
|
|
topK: top_k,
|
|
} = this.modelOptions;
|
|
|
|
const requestOptions = {
|
|
model,
|
|
stream: stream || true,
|
|
stop_sequences,
|
|
temperature,
|
|
metadata,
|
|
top_p,
|
|
top_k,
|
|
};
|
|
|
|
if (this.useMessages) {
|
|
requestOptions.messages = payload;
|
|
requestOptions.max_tokens = maxOutputTokens || 1500;
|
|
} else {
|
|
requestOptions.prompt = payload;
|
|
requestOptions.max_tokens_to_sample = maxOutputTokens || 1500;
|
|
}
|
|
|
|
if (this.systemMessage) {
|
|
requestOptions.system = this.systemMessage;
|
|
}
|
|
|
|
logger.debug('[AnthropicClient]', { ...requestOptions });
|
|
|
|
const handleChunk = (currentChunk) => {
|
|
if (currentChunk) {
|
|
text += currentChunk;
|
|
onProgress(currentChunk);
|
|
}
|
|
};
|
|
|
|
const maxRetries = 3;
|
|
async function processResponse() {
|
|
let attempts = 0;
|
|
|
|
while (attempts < maxRetries) {
|
|
let response;
|
|
try {
|
|
response = await this.createResponse(client, requestOptions);
|
|
|
|
signal.addEventListener('abort', () => {
|
|
logger.debug('[AnthropicClient] message aborted!');
|
|
if (response.controller?.abort) {
|
|
response.controller.abort();
|
|
}
|
|
});
|
|
|
|
for await (const completion of response) {
|
|
// Handle each completion as before
|
|
if (completion?.delta?.text) {
|
|
handleChunk(completion.delta.text);
|
|
} else if (completion.completion) {
|
|
handleChunk(completion.completion);
|
|
}
|
|
}
|
|
|
|
// Successful processing, exit loop
|
|
break;
|
|
} catch (error) {
|
|
attempts += 1;
|
|
logger.warn(
|
|
`User: ${this.user} | Anthropic Request ${attempts} failed: ${error.message}`,
|
|
);
|
|
|
|
if (attempts < maxRetries) {
|
|
await delayBeforeRetry(attempts, 350);
|
|
} else {
|
|
throw new Error(`Operation failed after ${maxRetries} attempts: ${error.message}`);
|
|
}
|
|
} finally {
|
|
signal.removeEventListener('abort', () => {
|
|
logger.debug('[AnthropicClient] message aborted!');
|
|
if (response.controller?.abort) {
|
|
response.controller.abort();
|
|
}
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
await processResponse.bind(this)();
|
|
|
|
return text.trim();
|
|
}
|
|
|
|
getSaveOptions() {
|
|
return {
|
|
promptPrefix: this.options.promptPrefix,
|
|
modelLabel: this.options.modelLabel,
|
|
resendFiles: this.options.resendFiles,
|
|
...this.modelOptions,
|
|
};
|
|
}
|
|
|
|
getBuildMessagesOptions() {
|
|
logger.debug('AnthropicClient doesn\'t use getBuildMessagesOptions');
|
|
}
|
|
|
|
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
|
|
if (tokenizersCache[encoding]) {
|
|
return tokenizersCache[encoding];
|
|
}
|
|
let tokenizer;
|
|
if (isModelName) {
|
|
tokenizer = encodingForModel(encoding, extendSpecialTokens);
|
|
} else {
|
|
tokenizer = getEncoding(encoding, extendSpecialTokens);
|
|
}
|
|
tokenizersCache[encoding] = tokenizer;
|
|
return tokenizer;
|
|
}
|
|
|
|
getTokenCount(text) {
|
|
return this.gptEncoder.encode(text, 'all').length;
|
|
}
|
|
}
|
|
|
|
module.exports = AnthropicClient;
|