mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 17:00:15 +01:00
* ci(backend-review.yml): add linter step to the backend review workflow * chore(backend-review.yml): remove prettier from lint-action configuration * chore: apply new linting workflow * chore(lint-staged.config.js): reorder lint-staged tasks for JavaScript and TypeScript files * chore(eslint): update ignorePatterns in .eslintrc.js chore(lint-action): remove prettier option in backend-review.yml chore(package.json): add lint and lint:fix scripts * chore(lint-staged.config.js): remove prettier --write command for js, jsx, ts, tsx files * chore(titleConvo.js): remove unnecessary console.log statement chore(titleConvo.js): add missing comma in options object * chore: apply linting to all files * chore(lint-staged.config.js): update lint-staged configuration to include prettier formatting
82 lines
4 KiB
JavaScript
82 lines
4 KiB
JavaScript
/* eslint-disable no-useless-escape */
|
|
const axios = require('axios');
|
|
const { Tool } = require('langchain/tools');
|
|
|
|
class WolframAlphaAPI extends Tool {
|
|
constructor(fields) {
|
|
super();
|
|
this.name = 'wolfram';
|
|
this.apiKey = fields.WOLFRAM_APP_ID || this.getAppId();
|
|
this.description = `Access computation, math, curated knowledge & real-time data through wolframAlpha.
|
|
- Understands natural language queries about entities in chemistry, physics, geography, history, art, astronomy, and more.
|
|
- Performs mathematical calculations, date and unit conversions, formula solving, etc.
|
|
General guidelines:
|
|
- Make natural-language queries in English; translate non-English queries before sending, then respond in the original language.
|
|
- Inform users if information is not from wolfram.
|
|
- ALWAYS use this exponent notation: "6*10^14", NEVER "6e14".
|
|
- Your input must ONLY be a single-line string.
|
|
- ALWAYS use proper Markdown formatting for all math, scientific, and chemical formulas, symbols, etc.: '$$\n[expression]\n$$' for standalone cases and '\( [expression] \)' when inline.
|
|
- Format inline wolfram Language code with Markdown code formatting.
|
|
- Convert inputs to simplified keyword queries whenever possible (e.g. convert "how many people live in France" to "France population").
|
|
- Use ONLY single-letter variable names, with or without integer subscript (e.g., n, n1, n_1).
|
|
- Use named physical constants (e.g., 'speed of light') without numerical substitution.
|
|
- Include a space between compound units (e.g., "Ω m" for "ohm*meter").
|
|
- To solve for a variable in an equation with units, consider solving a corresponding equation without units; exclude counting units (e.g., books), include genuine units (e.g., kg).
|
|
- If data for multiple properties is needed, make separate calls for each property.
|
|
- If a wolfram Alpha result is not relevant to the query:
|
|
-- If wolfram provides multiple 'Assumptions' for a query, choose the more relevant one(s) without explaining the initial result. If you are unsure, ask the user to choose.
|
|
- Performs complex calculations, data analysis, plotting, data import, and information retrieval.`;
|
|
// - Please ensure your input is properly formatted for wolfram Alpha.
|
|
// -- Re-send the exact same 'input' with NO modifications, and add the 'assumption' parameter, formatted as a list, with the relevant values.
|
|
// -- ONLY simplify or rephrase the initial query if a more relevant 'Assumption' or other input suggestions are not provided.
|
|
// -- Do not explain each step unless user input is needed. Proceed directly to making a better input based on the available assumptions.
|
|
// - wolfram Language code is accepted, but accepts only syntactically correct wolfram Language code.
|
|
}
|
|
|
|
async fetchRawText(url) {
|
|
try {
|
|
const response = await axios.get(url, { responseType: 'text' });
|
|
return response.data;
|
|
} catch (error) {
|
|
console.error(`Error fetching raw text: ${error}`);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
getAppId() {
|
|
const appId = process.env.WOLFRAM_APP_ID || '';
|
|
if (!appId) {
|
|
throw new Error('Missing WOLFRAM_APP_ID environment variable.');
|
|
}
|
|
return appId;
|
|
}
|
|
|
|
createWolframAlphaURL(query) {
|
|
// Clean up query
|
|
const formattedQuery = query.replaceAll(/`/g, '').replaceAll(/\n/g, ' ');
|
|
const baseURL = 'https://www.wolframalpha.com/api/v1/llm-api';
|
|
const encodedQuery = encodeURIComponent(formattedQuery);
|
|
const appId = this.apiKey || this.getAppId();
|
|
const url = `${baseURL}?input=${encodedQuery}&appid=${appId}`;
|
|
return url;
|
|
}
|
|
|
|
async _call(input) {
|
|
try {
|
|
const url = this.createWolframAlphaURL(input);
|
|
const response = await this.fetchRawText(url);
|
|
return response;
|
|
} catch (error) {
|
|
if (error.response && error.response.data) {
|
|
console.log('Error data:', error.response.data);
|
|
return error.response.data;
|
|
} else {
|
|
console.log('Error querying Wolfram Alpha', error.message);
|
|
// throw error;
|
|
return 'There was an error querying Wolfram Alpha.';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module.exports = WolframAlphaAPI;
|