LibreChat/packages/data-provider/src/parsers.ts
Danny Avila d59b62174f
🪨 feat: AWS Bedrock support (#3935)
* feat: Add BedrockIcon component to SVG library

* feat: EModelEndpoint.bedrock

* feat: first pass, bedrock chat. note: AgentClient is returning `agents` as conversation.endpoint

* fix: declare endpoint in initialization step

* chore: Update @librechat/agents dependency to version 1.4.5

* feat: backend content aggregation for agents/bedrock

* feat: abort agent requests

* feat: AWS Bedrock icons

* WIP: agent provider schema parsing

* chore: Update EditIcon props type

* refactor(useGenerationsByLatest): make agents and bedrock editable

* refactor: non-assistant message content, parts

* fix: Bedrock response `sender`

* fix: use endpointOption.model_parameters not endpointOption.modelOptions

* fix: types for step handler

* refactor: Update Agents.ToolCallDelta type

* refactor: Remove unnecessary assignment of parentMessageId in AskController

* refactor: remove unnecessary assignment of parentMessageId (agent request handler)

* fix(bedrock/agents): message regeneration

* refactor: dynamic form elements using react-hook-form Controllers

* fix: agent icons/labels for messages

* fix: agent actions

* fix: use of new dynamic tags causing application crash

* refactor: dynamic settings touch-ups

* refactor: update Slider component to allow custom track class name

* refactor: update DynamicSlider component styles

* refactor: use Constants value for GLOBAL_PROJECT_NAME (enum)

* feat: agent share global methods/controllers

* fix: agents query

* fix: `getResponseModel`

* fix: share prompt a11y issue

* refactor: update SharePrompt dialog theme styles

* refactor: explicit typing for SharePrompt

* feat: add agent roles/permissions

* chore: update @librechat/agents dependency to version 1.4.7 for tool_call_ids edge case

* fix(Anthropic): messages.X.content.Y.tool_use.input: Input should be a valid dictionary

* fix: handle text parts with tool_call_ids and empty text

* fix: role initialization

* refactor: don't make instructions required

* refactor: improve typing of Text part

* fix: setShowStopButton for agents route

* chore: remove params for now

* fix: add streamBuffer and streamRate to help prevent 'Overloaded' errors from Anthropic API

* refactor: remove console.log statement in ContentRender component

* chore: typing, rename Context to Delete Button

* chore(DeleteButton): logging

* refactor(Action): make accessible

* style(Action): improve a11y again

* refactor: remove use/mention of mongoose sessions

* feat: first pass, sharing agents

* feat: visual indicator for global agent, remove author when serving to non-author

* wip: params

* chore: fix typing issues

* fix(schemas): typing

* refactor: improve accessibility of ListCard component and fix console React warning

* wip: reset templates for non-legacy new convos

* Revert "wip: params"

This reverts commit f8067e91d4.

* Revert "refactor: dynamic form elements using react-hook-form Controllers"

This reverts commit 2150c4815d.

* fix(Parameters): types and parameter effect update to only update local state to parameters

* refactor: optimize useDebouncedInput hook for better performance

* feat: first pass, anthropic bedrock params

* chore: paramEndpoints check for endpointType too

* fix: maxTokens to use coerceNumber.optional(),

* feat: extra chat model params

* chore: reduce code repetition

* refactor: improve preset title handling in SaveAsPresetDialog component

* refactor: improve preset handling in HeaderOptions component

* chore: improve typing, replace legacy dialog for SaveAsPresetDialog

* feat: save as preset from parameters panel

* fix: multi-search in select dropdown when using Option type

* refactor: update default showDefault value to false in Dynamic components

* feat: Bedrock presets settings

* chore: config, fix agents schema, update config version

* refactor: update AWS region variable name in bedrock options endpoint to BEDROCK_AWS_DEFAULT_REGION

* refactor: update baseEndpointSchema in config.ts to include baseURL property

* refactor: update createRun function to include req parameter and set streamRate based on provider

* feat: availableRegions via config

* refactor: remove unused demo agent controller file

* WIP: title

* Update @librechat/agents to version 1.5.0

* chore: addTitle.js to handle empty responseText

* feat: support images and titles

* feat: context token updates

* Refactor BaseClient test to use expect.objectContaining

* refactor: add model select, remove header options params, move side panel params below prompts

* chore: update models list, catch title error

* feat: model service for bedrock models (env)

* chore: Remove verbose debug log in AgentClient class following stream

* feat(bedrock): track token spend; fix: token rates, value key mapping for AWS models

* refactor: handle streamRate in `handleLLMNewToken` callback

* chore: AWS Bedrock example config in `.env.example`

* refactor: Rename bedrockMeta to bedrockGeneral in settings.ts and use for AI21 and Amazon Bedrock providers

* refactor: Update `.env.example` with AWS Bedrock model IDs URL and additional notes

* feat: titleModel support for bedrock

* refactor: Update `.env.example` with additional notes for AWS Bedrock model IDs
2024-09-09 12:06:59 -04:00

402 lines
11 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import type { ZodIssue } from 'zod';
import type * as a from './types/assistants';
import type * as s from './schemas';
import type * as t from './types';
import { ContentTypes } from './types/runs';
import {
openAISchema,
googleSchema,
bingAISchema,
EModelEndpoint,
anthropicSchema,
assistantSchema,
gptPluginsSchema,
// agentsSchema,
compactAgentsSchema,
compactOpenAISchema,
compactGoogleSchema,
compactChatGPTSchema,
chatGPTBrowserSchema,
compactPluginsSchema,
compactAssistantSchema,
compactAnthropicSchema,
} from './schemas';
import { bedrockInputSchema } from './bedrock';
import { alternateName } from './config';
type EndpointSchema =
| typeof openAISchema
| typeof googleSchema
| typeof bingAISchema
| typeof anthropicSchema
| typeof chatGPTBrowserSchema
| typeof gptPluginsSchema
| typeof assistantSchema
| typeof compactAgentsSchema
| typeof bedrockInputSchema;
const endpointSchemas: Record<EModelEndpoint, EndpointSchema> = {
[EModelEndpoint.openAI]: openAISchema,
[EModelEndpoint.azureOpenAI]: openAISchema,
[EModelEndpoint.custom]: openAISchema,
[EModelEndpoint.google]: googleSchema,
[EModelEndpoint.bingAI]: bingAISchema,
[EModelEndpoint.anthropic]: anthropicSchema,
[EModelEndpoint.chatGPTBrowser]: chatGPTBrowserSchema,
[EModelEndpoint.gptPlugins]: gptPluginsSchema,
[EModelEndpoint.assistants]: assistantSchema,
[EModelEndpoint.azureAssistants]: assistantSchema,
[EModelEndpoint.agents]: compactAgentsSchema,
[EModelEndpoint.bedrock]: bedrockInputSchema,
};
// const schemaCreators: Record<EModelEndpoint, (customSchema: DefaultSchemaValues) => EndpointSchema> = {
// [EModelEndpoint.google]: createGoogleSchema,
// };
/** Get the enabled endpoints from the `ENDPOINTS` environment variable */
export function getEnabledEndpoints() {
const defaultEndpoints: string[] = [
EModelEndpoint.openAI,
EModelEndpoint.agents,
EModelEndpoint.assistants,
EModelEndpoint.azureAssistants,
EModelEndpoint.azureOpenAI,
EModelEndpoint.google,
EModelEndpoint.bingAI,
EModelEndpoint.chatGPTBrowser,
EModelEndpoint.gptPlugins,
EModelEndpoint.anthropic,
EModelEndpoint.bedrock,
];
const endpointsEnv = process.env.ENDPOINTS ?? '';
let enabledEndpoints = defaultEndpoints;
if (endpointsEnv) {
enabledEndpoints = endpointsEnv
.split(',')
.filter((endpoint) => endpoint.trim())
.map((endpoint) => endpoint.trim());
}
return enabledEndpoints;
}
/** Orders an existing EndpointsConfig object based on enabled endpoint/custom ordering */
export function orderEndpointsConfig(endpointsConfig: t.TEndpointsConfig) {
if (!endpointsConfig) {
return {};
}
const enabledEndpoints = getEnabledEndpoints();
const endpointKeys = Object.keys(endpointsConfig);
const defaultCustomIndex = enabledEndpoints.indexOf(EModelEndpoint.custom);
return endpointKeys.reduce(
(accumulatedConfig: Record<string, t.TConfig | null | undefined>, currentEndpointKey) => {
const isCustom = !(currentEndpointKey in EModelEndpoint);
const isEnabled = enabledEndpoints.includes(currentEndpointKey);
if (!isEnabled && !isCustom) {
return accumulatedConfig;
}
const index = enabledEndpoints.indexOf(currentEndpointKey);
if (isCustom) {
accumulatedConfig[currentEndpointKey] = {
order: defaultCustomIndex >= 0 ? defaultCustomIndex : 9999,
...(endpointsConfig[currentEndpointKey] as Omit<t.TConfig, 'order'> & { order?: number }),
};
} else if (endpointsConfig[currentEndpointKey]) {
accumulatedConfig[currentEndpointKey] = {
...endpointsConfig[currentEndpointKey],
order: index,
};
}
return accumulatedConfig;
},
{},
);
}
/** Converts an array of Zod issues into a string. */
export function errorsToString(errors: ZodIssue[]) {
return errors
.map((error) => {
const field = error.path.join('.');
const message = error.message;
return `${field}: ${message}`;
})
.join(' ');
}
export const envVarRegex = /^\${(.+)}$/;
/** Extracts the value of an environment variable from a string. */
export function extractEnvVariable(value: string) {
const envVarMatch = value.match(envVarRegex);
if (envVarMatch) {
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
return process.env[envVarMatch[1]] || value;
}
return value;
}
/** Resolves header values to env variables if detected */
export function resolveHeaders(headers: Record<string, string> | undefined) {
const resolvedHeaders = { ...(headers ?? {}) };
if (headers && typeof headers === 'object' && !Array.isArray(headers)) {
Object.keys(headers).forEach((key) => {
resolvedHeaders[key] = extractEnvVariable(headers[key]);
});
}
return resolvedHeaders;
}
export function getFirstDefinedValue(possibleValues: string[]) {
let returnValue;
for (const value of possibleValues) {
if (value) {
returnValue = value;
break;
}
}
return returnValue;
}
export function getNonEmptyValue(possibleValues: string[]) {
for (const value of possibleValues) {
if (value && value.trim() !== '') {
return value;
}
}
return undefined;
}
export type TPossibleValues = {
models: string[];
secondaryModels?: string[];
};
export const parseConvo = ({
endpoint,
endpointType,
conversation,
possibleValues,
}: {
endpoint: EModelEndpoint;
endpointType?: EModelEndpoint;
conversation: Partial<s.TConversation | s.TPreset> | null;
possibleValues?: TPossibleValues;
// TODO: POC for default schema
// defaultSchema?: Partial<EndpointSchema>,
}) => {
let schema = endpointSchemas[endpoint] as EndpointSchema | undefined;
if (!schema && !endpointType) {
throw new Error(`Unknown endpoint: ${endpoint}`);
} else if (!schema && endpointType) {
schema = endpointSchemas[endpointType];
}
// if (defaultSchema && schemaCreators[endpoint]) {
// schema = schemaCreators[endpoint](defaultSchema);
// }
const convo = schema?.parse(conversation) as s.TConversation | undefined;
const { models, secondaryModels } = possibleValues ?? {};
if (models && convo) {
convo.model = getFirstDefinedValue(models) ?? convo.model;
}
if (secondaryModels && convo?.agentOptions) {
convo.agentOptions.model = getFirstDefinedValue(secondaryModels) ?? convo.agentOptions.model;
}
return convo;
};
export const getResponseSender = (endpointOption: t.TEndpointOption): string => {
const {
model: _m,
endpoint,
endpointType,
modelDisplayLabel,
chatGptLabel,
modelLabel,
jailbreak,
} = endpointOption;
const model = _m ?? '';
if (
[
EModelEndpoint.openAI,
EModelEndpoint.bedrock,
EModelEndpoint.gptPlugins,
EModelEndpoint.azureOpenAI,
EModelEndpoint.chatGPTBrowser,
].includes(endpoint)
) {
if (chatGptLabel) {
return chatGptLabel;
} else if (model && model.includes('gpt-3')) {
return 'GPT-3.5';
} else if (model && model.includes('gpt-4o')) {
return 'GPT-4o';
} else if (model && model.includes('gpt-4')) {
return 'GPT-4';
} else if (model && model.includes('mistral')) {
return 'Mistral';
}
return (alternateName[endpoint] as string | undefined) ?? 'ChatGPT';
}
if (endpoint === EModelEndpoint.bingAI) {
return jailbreak === true ? 'Sydney' : 'BingAI';
}
if (endpoint === EModelEndpoint.anthropic) {
return modelLabel ?? 'Claude';
}
if (endpoint === EModelEndpoint.bedrock) {
return modelLabel ?? alternateName[endpoint];
}
if (endpoint === EModelEndpoint.google) {
if (modelLabel) {
return modelLabel;
} else if (model && model.includes('gemini')) {
return 'Gemini';
} else if (model && model.includes('code')) {
return 'Codey';
}
return 'PaLM2';
}
if (endpoint === EModelEndpoint.custom || endpointType === EModelEndpoint.custom) {
if (modelLabel) {
return modelLabel;
} else if (chatGptLabel) {
return chatGptLabel;
} else if (model && model.includes('mistral')) {
return 'Mistral';
} else if (model && model.includes('gpt-3')) {
return 'GPT-3.5';
} else if (model && model.includes('gpt-4o')) {
return 'GPT-4o';
} else if (model && model.includes('gpt-4')) {
return 'GPT-4';
} else if (modelDisplayLabel) {
return modelDisplayLabel;
}
return 'AI';
}
return '';
};
type CompactEndpointSchema =
| typeof compactOpenAISchema
| typeof compactAssistantSchema
| typeof compactAgentsSchema
| typeof compactGoogleSchema
| typeof bingAISchema
| typeof compactAnthropicSchema
| typeof compactChatGPTSchema
| typeof bedrockInputSchema
| typeof compactPluginsSchema;
const compactEndpointSchemas: Record<string, CompactEndpointSchema> = {
[EModelEndpoint.openAI]: compactOpenAISchema,
[EModelEndpoint.azureOpenAI]: compactOpenAISchema,
[EModelEndpoint.custom]: compactOpenAISchema,
[EModelEndpoint.assistants]: compactAssistantSchema,
[EModelEndpoint.azureAssistants]: compactAssistantSchema,
[EModelEndpoint.agents]: compactAgentsSchema,
[EModelEndpoint.google]: compactGoogleSchema,
[EModelEndpoint.bedrock]: bedrockInputSchema,
/* BingAI needs all fields */
[EModelEndpoint.bingAI]: bingAISchema,
[EModelEndpoint.anthropic]: compactAnthropicSchema,
[EModelEndpoint.chatGPTBrowser]: compactChatGPTSchema,
[EModelEndpoint.gptPlugins]: compactPluginsSchema,
};
export const parseCompactConvo = ({
endpoint,
endpointType,
conversation,
possibleValues,
}: {
endpoint?: EModelEndpoint;
endpointType?: EModelEndpoint;
conversation: Partial<s.TConversation | s.TPreset>;
possibleValues?: TPossibleValues;
// TODO: POC for default schema
// defaultSchema?: Partial<EndpointSchema>,
}) => {
if (!endpoint) {
throw new Error(`undefined endpoint: ${endpoint}`);
}
let schema = compactEndpointSchemas[endpoint];
if (!schema && !endpointType) {
throw new Error(`Unknown endpoint: ${endpoint}`);
} else if (!schema && endpointType) {
schema = compactEndpointSchemas[endpointType];
}
const convo = schema.parse(conversation) as s.TConversation;
// const { models, secondaryModels } = possibleValues ?? {};
const { models } = possibleValues ?? {};
if (models && convo) {
convo.model = getFirstDefinedValue(models) ?? convo.model;
}
// if (secondaryModels && convo.agentOptions) {
// convo.agentOptionmodel = getFirstDefinedValue(secondaryModels) ?? convo.agentOptionmodel;
// }
return convo;
};
export function parseTextParts(contentParts: a.TMessageContentParts[]): string {
let result = '';
for (const part of contentParts) {
if (part.type === ContentTypes.TEXT) {
const textValue = typeof part.text === 'string' ? part.text : part.text.value;
if (
result.length > 0 &&
textValue.length > 0 &&
result[result.length - 1] !== ' ' &&
textValue[0] !== ' '
) {
result += ' ';
}
result += textValue;
}
}
return result;
}
export const SEPARATORS = ['.', '?', '!', '۔', '。', '‥', ';', '¡', '¿', '\n', '```'];
export function findLastSeparatorIndex(text: string, separators = SEPARATORS): number {
let lastIndex = -1;
for (const separator of separators) {
const index = text.lastIndexOf(separator);
if (index > lastIndex) {
lastIndex = index;
}
}
return lastIndex;
}