mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 08:12:00 +02:00

* fix: azure title model * refactor: typing for uploadMistralOCR * fix: update conversation ID handling in useSSE for better state management, only use PENDING_CONVO for new conversations * fix: streamline conversation ID handling in useSSE for simplicity, only needs state update to prevent draft from applying * fix: update performOCR and tests to support document and image URLs with appropriate types
1049 lines
34 KiB
JavaScript
1049 lines
34 KiB
JavaScript
// const { HttpsProxyAgent } = require('https-proxy-agent');
|
|
// const {
|
|
// Constants,
|
|
// ImageDetail,
|
|
// EModelEndpoint,
|
|
// resolveHeaders,
|
|
// validateVisionModel,
|
|
// mapModelToAzureConfig,
|
|
// } = require('librechat-data-provider');
|
|
require('events').EventEmitter.defaultMaxListeners = 100;
|
|
const {
|
|
Callback,
|
|
GraphEvents,
|
|
formatMessage,
|
|
formatAgentMessages,
|
|
formatContentStrings,
|
|
getTokenCountForMessage,
|
|
createMetadataAggregator,
|
|
} = require('@librechat/agents');
|
|
const {
|
|
Constants,
|
|
VisionModes,
|
|
ContentTypes,
|
|
EModelEndpoint,
|
|
KnownEndpoints,
|
|
isAgentsEndpoint,
|
|
AgentCapabilities,
|
|
bedrockInputSchema,
|
|
removeNullishValues,
|
|
} = require('librechat-data-provider');
|
|
const { getCustomEndpointConfig, checkCapability } = require('~/server/services/Config');
|
|
const { addCacheControl, createContextHandlers } = require('~/app/clients/prompts');
|
|
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
|
|
const { getBufferString, HumanMessage } = require('@langchain/core/messages');
|
|
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
|
|
const initOpenAI = require('~/server/services/Endpoints/openAI/initialize');
|
|
const Tokenizer = require('~/server/services/Tokenizer');
|
|
const BaseClient = require('~/app/clients/BaseClient');
|
|
const { logger, sendEvent } = require('~/config');
|
|
const { createRun } = require('./run');
|
|
|
|
/** @typedef {import('@librechat/agents').MessageContentComplex} MessageContentComplex */
|
|
/** @typedef {import('@langchain/core/runnables').RunnableConfig} RunnableConfig */
|
|
|
|
/**
|
|
* @param {ServerRequest} req
|
|
* @param {Agent} agent
|
|
* @param {string} endpoint
|
|
*/
|
|
const payloadParser = ({ req, agent, endpoint }) => {
|
|
if (isAgentsEndpoint(endpoint)) {
|
|
return { model: undefined };
|
|
} else if (endpoint === EModelEndpoint.bedrock) {
|
|
return bedrockInputSchema.parse(agent.model_parameters);
|
|
}
|
|
return req.body.endpointOption.model_parameters;
|
|
};
|
|
|
|
const legacyContentEndpoints = new Set([KnownEndpoints.groq, KnownEndpoints.deepseek]);
|
|
|
|
const noSystemModelRegex = [/\bo1\b/gi];
|
|
|
|
// const { processMemory, memoryInstructions } = require('~/server/services/Endpoints/agents/memory');
|
|
// const { getFormattedMemories } = require('~/models/Memory');
|
|
// const { getCurrentDateTime } = require('~/utils');
|
|
|
|
function createTokenCounter(encoding) {
|
|
return (message) => {
|
|
const countTokens = (text) => Tokenizer.getTokenCount(text, encoding);
|
|
return getTokenCountForMessage(message, countTokens);
|
|
};
|
|
}
|
|
|
|
function logToolError(graph, error, toolId) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #chatCompletion] Tool Error',
|
|
error,
|
|
toolId,
|
|
);
|
|
}
|
|
|
|
class AgentClient extends BaseClient {
|
|
constructor(options = {}) {
|
|
super(null, options);
|
|
/** The current client class
|
|
* @type {string} */
|
|
this.clientName = EModelEndpoint.agents;
|
|
|
|
/** @type {'discard' | 'summarize'} */
|
|
this.contextStrategy = 'discard';
|
|
|
|
/** @deprecated @type {true} - Is a Chat Completion Request */
|
|
this.isChatCompletion = true;
|
|
|
|
/** @type {AgentRun} */
|
|
this.run;
|
|
|
|
const {
|
|
agentConfigs,
|
|
contentParts,
|
|
collectedUsage,
|
|
artifactPromises,
|
|
maxContextTokens,
|
|
...clientOptions
|
|
} = options;
|
|
|
|
this.agentConfigs = agentConfigs;
|
|
this.maxContextTokens = maxContextTokens;
|
|
/** @type {MessageContentComplex[]} */
|
|
this.contentParts = contentParts;
|
|
/** @type {Array<UsageMetadata>} */
|
|
this.collectedUsage = collectedUsage;
|
|
/** @type {ArtifactPromises} */
|
|
this.artifactPromises = artifactPromises;
|
|
/** @type {AgentClientOptions} */
|
|
this.options = Object.assign({ endpoint: options.endpoint }, clientOptions);
|
|
/** @type {string} */
|
|
this.model = this.options.agent.model_parameters.model;
|
|
/** The key for the usage object's input tokens
|
|
* @type {string} */
|
|
this.inputTokensKey = 'input_tokens';
|
|
/** The key for the usage object's output tokens
|
|
* @type {string} */
|
|
this.outputTokensKey = 'output_tokens';
|
|
/** @type {UsageMetadata} */
|
|
this.usage;
|
|
/** @type {Record<string, number>} */
|
|
this.indexTokenCountMap = {};
|
|
}
|
|
|
|
/**
|
|
* Returns the aggregated content parts for the current run.
|
|
* @returns {MessageContentComplex[]} */
|
|
getContentParts() {
|
|
return this.contentParts;
|
|
}
|
|
|
|
setOptions(options) {
|
|
logger.info('[api/server/controllers/agents/client.js] setOptions', options);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
|
|
* - Sets `this.modelOptions.model` to `gpt-4-vision-preview` if the request is a vision request.
|
|
* - Sets `this.isVisionModel` to `true` if vision request.
|
|
* - Deletes `this.modelOptions.stop` if vision request.
|
|
* @param {MongoFile[]} attachments
|
|
*/
|
|
checkVisionRequest(attachments) {
|
|
logger.info(
|
|
'[api/server/controllers/agents/client.js #checkVisionRequest] not implemented',
|
|
attachments,
|
|
);
|
|
// if (!attachments) {
|
|
// return;
|
|
// }
|
|
|
|
// const availableModels = this.options.modelsConfig?.[this.options.endpoint];
|
|
// if (!availableModels) {
|
|
// return;
|
|
// }
|
|
|
|
// let visionRequestDetected = false;
|
|
// for (const file of attachments) {
|
|
// if (file?.type?.includes('image')) {
|
|
// visionRequestDetected = true;
|
|
// break;
|
|
// }
|
|
// }
|
|
// if (!visionRequestDetected) {
|
|
// return;
|
|
// }
|
|
|
|
// this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
|
|
// if (this.isVisionModel) {
|
|
// delete this.modelOptions.stop;
|
|
// return;
|
|
// }
|
|
|
|
// for (const model of availableModels) {
|
|
// if (!validateVisionModel({ model, availableModels })) {
|
|
// continue;
|
|
// }
|
|
// this.modelOptions.model = model;
|
|
// this.isVisionModel = true;
|
|
// delete this.modelOptions.stop;
|
|
// return;
|
|
// }
|
|
|
|
// if (!availableModels.includes(this.defaultVisionModel)) {
|
|
// return;
|
|
// }
|
|
// if (!validateVisionModel({ model: this.defaultVisionModel, availableModels })) {
|
|
// return;
|
|
// }
|
|
|
|
// this.modelOptions.model = this.defaultVisionModel;
|
|
// this.isVisionModel = true;
|
|
// delete this.modelOptions.stop;
|
|
}
|
|
|
|
getSaveOptions() {
|
|
// TODO:
|
|
// would need to be override settings; otherwise, model needs to be undefined
|
|
// model: this.override.model,
|
|
// instructions: this.override.instructions,
|
|
// additional_instructions: this.override.additional_instructions,
|
|
let runOptions = {};
|
|
try {
|
|
runOptions = payloadParser(this.options);
|
|
} catch (error) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #getSaveOptions] Error parsing options',
|
|
error,
|
|
);
|
|
}
|
|
|
|
return removeNullishValues(
|
|
Object.assign(
|
|
{
|
|
endpoint: this.options.endpoint,
|
|
agent_id: this.options.agent.id,
|
|
modelLabel: this.options.modelLabel,
|
|
maxContextTokens: this.options.maxContextTokens,
|
|
resendFiles: this.options.resendFiles,
|
|
imageDetail: this.options.imageDetail,
|
|
spec: this.options.spec,
|
|
iconURL: this.options.iconURL,
|
|
},
|
|
// TODO: PARSE OPTIONS BY PROVIDER, MAY CONTAIN SENSITIVE DATA
|
|
runOptions,
|
|
),
|
|
);
|
|
}
|
|
|
|
getBuildMessagesOptions() {
|
|
return {
|
|
instructions: this.options.agent.instructions,
|
|
additional_instructions: this.options.agent.additional_instructions,
|
|
};
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param {TMessage} message
|
|
* @param {Array<MongoFile>} attachments
|
|
* @returns {Promise<Array<Partial<MongoFile>>>}
|
|
*/
|
|
async addImageURLs(message, attachments) {
|
|
const { files, text, image_urls } = await encodeAndFormat(
|
|
this.options.req,
|
|
attachments,
|
|
this.options.agent.provider,
|
|
VisionModes.agents,
|
|
);
|
|
message.image_urls = image_urls.length ? image_urls : undefined;
|
|
if (text && text.length) {
|
|
message.ocr = text;
|
|
}
|
|
return files;
|
|
}
|
|
|
|
async buildMessages(
|
|
messages,
|
|
parentMessageId,
|
|
{ instructions = null, additional_instructions = null },
|
|
opts,
|
|
) {
|
|
let orderedMessages = this.constructor.getMessagesForConversation({
|
|
messages,
|
|
parentMessageId,
|
|
summary: this.shouldSummarize,
|
|
});
|
|
|
|
let payload;
|
|
/** @type {number | undefined} */
|
|
let promptTokens;
|
|
|
|
/** @type {string} */
|
|
let systemContent = [instructions ?? '', additional_instructions ?? '']
|
|
.filter(Boolean)
|
|
.join('\n')
|
|
.trim();
|
|
// this.systemMessage = getCurrentDateTime();
|
|
// const { withKeys, withoutKeys } = await getFormattedMemories({
|
|
// userId: this.options.req.user.id,
|
|
// });
|
|
// processMemory({
|
|
// userId: this.options.req.user.id,
|
|
// message: this.options.req.body.text,
|
|
// parentMessageId,
|
|
// memory: withKeys,
|
|
// thread_id: this.conversationId,
|
|
// }).catch((error) => {
|
|
// logger.error('Memory Agent failed to process memory', error);
|
|
// });
|
|
|
|
// this.systemMessage += '\n\n' + memoryInstructions;
|
|
// if (withoutKeys) {
|
|
// this.systemMessage += `\n\n# Existing memory about the user:\n${withoutKeys}`;
|
|
// }
|
|
|
|
if (this.options.attachments) {
|
|
const attachments = await this.options.attachments;
|
|
|
|
if (this.message_file_map) {
|
|
this.message_file_map[orderedMessages[orderedMessages.length - 1].messageId] = attachments;
|
|
} else {
|
|
this.message_file_map = {
|
|
[orderedMessages[orderedMessages.length - 1].messageId]: attachments,
|
|
};
|
|
}
|
|
|
|
const files = await this.addImageURLs(
|
|
orderedMessages[orderedMessages.length - 1],
|
|
attachments,
|
|
);
|
|
|
|
this.options.attachments = files;
|
|
}
|
|
|
|
/** Note: Bedrock uses legacy RAG API handling */
|
|
if (this.message_file_map && !isAgentsEndpoint(this.options.endpoint)) {
|
|
this.contextHandlers = createContextHandlers(
|
|
this.options.req,
|
|
orderedMessages[orderedMessages.length - 1].text,
|
|
);
|
|
}
|
|
|
|
const formattedMessages = orderedMessages.map((message, i) => {
|
|
const formattedMessage = formatMessage({
|
|
message,
|
|
userName: this.options?.name,
|
|
assistantName: this.options?.modelLabel,
|
|
});
|
|
|
|
if (message.ocr && i !== orderedMessages.length - 1) {
|
|
if (typeof formattedMessage.content === 'string') {
|
|
formattedMessage.content = message.ocr + '\n' + formattedMessage.content;
|
|
} else {
|
|
const textPart = formattedMessage.content.find((part) => part.type === 'text');
|
|
textPart
|
|
? (textPart.text = message.ocr + '\n' + textPart.text)
|
|
: formattedMessage.content.unshift({ type: 'text', text: message.ocr });
|
|
}
|
|
} else if (message.ocr && i === orderedMessages.length - 1) {
|
|
systemContent = [systemContent, message.ocr].join('\n');
|
|
}
|
|
|
|
const needsTokenCount =
|
|
(this.contextStrategy && !orderedMessages[i].tokenCount) || message.ocr;
|
|
|
|
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
|
|
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
|
|
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
|
|
}
|
|
|
|
/* If message has files, calculate image token cost */
|
|
if (this.message_file_map && this.message_file_map[message.messageId]) {
|
|
const attachments = this.message_file_map[message.messageId];
|
|
for (const file of attachments) {
|
|
if (file.embedded) {
|
|
this.contextHandlers?.processFile(file);
|
|
continue;
|
|
}
|
|
|
|
// orderedMessages[i].tokenCount += this.calculateImageTokenCost({
|
|
// width: file.width,
|
|
// height: file.height,
|
|
// detail: this.options.imageDetail ?? ImageDetail.auto,
|
|
// });
|
|
}
|
|
}
|
|
|
|
return formattedMessage;
|
|
});
|
|
|
|
if (this.contextHandlers) {
|
|
this.augmentedPrompt = await this.contextHandlers.createContext();
|
|
systemContent = this.augmentedPrompt + systemContent;
|
|
}
|
|
|
|
if (systemContent) {
|
|
this.options.agent.instructions = systemContent;
|
|
}
|
|
|
|
/** @type {Record<string, number> | undefined} */
|
|
let tokenCountMap;
|
|
|
|
if (this.contextStrategy) {
|
|
({ payload, promptTokens, tokenCountMap, messages } = await this.handleContextStrategy({
|
|
orderedMessages,
|
|
formattedMessages,
|
|
}));
|
|
}
|
|
|
|
for (let i = 0; i < messages.length; i++) {
|
|
this.indexTokenCountMap[i] = messages[i].tokenCount;
|
|
}
|
|
|
|
const result = {
|
|
tokenCountMap,
|
|
prompt: payload,
|
|
promptTokens,
|
|
messages,
|
|
};
|
|
|
|
if (promptTokens >= 0 && typeof opts?.getReqData === 'function') {
|
|
opts.getReqData({ promptTokens });
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/** @type {sendCompletion} */
|
|
async sendCompletion(payload, opts = {}) {
|
|
await this.chatCompletion({
|
|
payload,
|
|
onProgress: opts.onProgress,
|
|
abortController: opts.abortController,
|
|
});
|
|
return this.contentParts;
|
|
}
|
|
|
|
/**
|
|
* @param {Object} params
|
|
* @param {string} [params.model]
|
|
* @param {string} [params.context='message']
|
|
* @param {UsageMetadata[]} [params.collectedUsage=this.collectedUsage]
|
|
*/
|
|
async recordCollectedUsage({ model, context = 'message', collectedUsage = this.collectedUsage }) {
|
|
if (!collectedUsage || !collectedUsage.length) {
|
|
return;
|
|
}
|
|
const input_tokens =
|
|
(collectedUsage[0]?.input_tokens || 0) +
|
|
(Number(collectedUsage[0]?.input_token_details?.cache_creation) || 0) +
|
|
(Number(collectedUsage[0]?.input_token_details?.cache_read) || 0);
|
|
|
|
let output_tokens = 0;
|
|
let previousTokens = input_tokens; // Start with original input
|
|
for (let i = 0; i < collectedUsage.length; i++) {
|
|
const usage = collectedUsage[i];
|
|
if (!usage) {
|
|
continue;
|
|
}
|
|
|
|
const cache_creation = Number(usage.input_token_details?.cache_creation) || 0;
|
|
const cache_read = Number(usage.input_token_details?.cache_read) || 0;
|
|
|
|
const txMetadata = {
|
|
context,
|
|
conversationId: this.conversationId,
|
|
user: this.user ?? this.options.req.user?.id,
|
|
endpointTokenConfig: this.options.endpointTokenConfig,
|
|
model: usage.model ?? model ?? this.model ?? this.options.agent.model_parameters.model,
|
|
};
|
|
|
|
if (i > 0) {
|
|
// Count new tokens generated (input_tokens minus previous accumulated tokens)
|
|
output_tokens +=
|
|
(Number(usage.input_tokens) || 0) + cache_creation + cache_read - previousTokens;
|
|
}
|
|
|
|
// Add this message's output tokens
|
|
output_tokens += Number(usage.output_tokens) || 0;
|
|
|
|
// Update previousTokens to include this message's output
|
|
previousTokens += Number(usage.output_tokens) || 0;
|
|
|
|
if (cache_creation > 0 || cache_read > 0) {
|
|
spendStructuredTokens(txMetadata, {
|
|
promptTokens: {
|
|
input: usage.input_tokens,
|
|
write: cache_creation,
|
|
read: cache_read,
|
|
},
|
|
completionTokens: usage.output_tokens,
|
|
}).catch((err) => {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending structured tokens',
|
|
err,
|
|
);
|
|
});
|
|
continue;
|
|
}
|
|
spendTokens(txMetadata, {
|
|
promptTokens: usage.input_tokens,
|
|
completionTokens: usage.output_tokens,
|
|
}).catch((err) => {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending tokens',
|
|
err,
|
|
);
|
|
});
|
|
}
|
|
|
|
this.usage = {
|
|
input_tokens,
|
|
output_tokens,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Get stream usage as returned by this client's API response.
|
|
* @returns {UsageMetadata} The stream usage object.
|
|
*/
|
|
getStreamUsage() {
|
|
return this.usage;
|
|
}
|
|
|
|
/**
|
|
* @param {TMessage} responseMessage
|
|
* @returns {number}
|
|
*/
|
|
getTokenCountForResponse({ content }) {
|
|
return this.getTokenCountForMessage({
|
|
role: 'assistant',
|
|
content,
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Calculates the correct token count for the current user message based on the token count map and API usage.
|
|
* Edge case: If the calculation results in a negative value, it returns the original estimate.
|
|
* If revisiting a conversation with a chat history entirely composed of token estimates,
|
|
* the cumulative token count going forward should become more accurate as the conversation progresses.
|
|
* @param {Object} params - The parameters for the calculation.
|
|
* @param {Record<string, number>} params.tokenCountMap - A map of message IDs to their token counts.
|
|
* @param {string} params.currentMessageId - The ID of the current message to calculate.
|
|
* @param {OpenAIUsageMetadata} params.usage - The usage object returned by the API.
|
|
* @returns {number} The correct token count for the current user message.
|
|
*/
|
|
calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage }) {
|
|
const originalEstimate = tokenCountMap[currentMessageId] || 0;
|
|
|
|
if (!usage || typeof usage[this.inputTokensKey] !== 'number') {
|
|
return originalEstimate;
|
|
}
|
|
|
|
tokenCountMap[currentMessageId] = 0;
|
|
const totalTokensFromMap = Object.values(tokenCountMap).reduce((sum, count) => {
|
|
const numCount = Number(count);
|
|
return sum + (isNaN(numCount) ? 0 : numCount);
|
|
}, 0);
|
|
const totalInputTokens = usage[this.inputTokensKey] ?? 0;
|
|
|
|
const currentMessageTokens = totalInputTokens - totalTokensFromMap;
|
|
return currentMessageTokens > 0 ? currentMessageTokens : originalEstimate;
|
|
}
|
|
|
|
async chatCompletion({ payload, abortController = null }) {
|
|
/** @type {Partial<RunnableConfig> & { version: 'v1' | 'v2'; run_id?: string; streamMode: string }} */
|
|
let config;
|
|
/** @type {ReturnType<createRun>} */
|
|
let run;
|
|
try {
|
|
if (!abortController) {
|
|
abortController = new AbortController();
|
|
}
|
|
|
|
// if (this.options.headers) {
|
|
// opts.defaultHeaders = { ...opts.defaultHeaders, ...this.options.headers };
|
|
// }
|
|
|
|
// if (this.options.proxy) {
|
|
// opts.httpAgent = new HttpsProxyAgent(this.options.proxy);
|
|
// }
|
|
|
|
// if (this.isVisionModel) {
|
|
// modelOptions.max_tokens = 4000;
|
|
// }
|
|
|
|
// /** @type {TAzureConfig | undefined} */
|
|
// const azureConfig = this.options?.req?.app?.locals?.[EModelEndpoint.azureOpenAI];
|
|
|
|
// if (
|
|
// (this.azure && this.isVisionModel && azureConfig) ||
|
|
// (azureConfig && this.isVisionModel && this.options.endpoint === EModelEndpoint.azureOpenAI)
|
|
// ) {
|
|
// const { modelGroupMap, groupMap } = azureConfig;
|
|
// const {
|
|
// azureOptions,
|
|
// baseURL,
|
|
// headers = {},
|
|
// serverless,
|
|
// } = mapModelToAzureConfig({
|
|
// modelName: modelOptions.model,
|
|
// modelGroupMap,
|
|
// groupMap,
|
|
// });
|
|
// opts.defaultHeaders = resolveHeaders(headers);
|
|
// this.langchainProxy = extractBaseURL(baseURL);
|
|
// this.apiKey = azureOptions.azureOpenAIApiKey;
|
|
|
|
// const groupName = modelGroupMap[modelOptions.model].group;
|
|
// this.options.addParams = azureConfig.groupMap[groupName].addParams;
|
|
// this.options.dropParams = azureConfig.groupMap[groupName].dropParams;
|
|
// // Note: `forcePrompt` not re-assigned as only chat models are vision models
|
|
|
|
// this.azure = !serverless && azureOptions;
|
|
// this.azureEndpoint =
|
|
// !serverless && genAzureChatCompletion(this.azure, modelOptions.model, this);
|
|
// }
|
|
|
|
// if (this.azure || this.options.azure) {
|
|
// /* Azure Bug, extremely short default `max_tokens` response */
|
|
// if (!modelOptions.max_tokens && modelOptions.model === 'gpt-4-vision-preview') {
|
|
// modelOptions.max_tokens = 4000;
|
|
// }
|
|
|
|
// /* Azure does not accept `model` in the body, so we need to remove it. */
|
|
// delete modelOptions.model;
|
|
|
|
// opts.baseURL = this.langchainProxy
|
|
// ? constructAzureURL({
|
|
// baseURL: this.langchainProxy,
|
|
// azureOptions: this.azure,
|
|
// })
|
|
// : this.azureEndpoint.split(/(?<!\/)\/(chat|completion)\//)[0];
|
|
|
|
// opts.defaultQuery = { 'api-version': this.azure.azureOpenAIApiVersion };
|
|
// opts.defaultHeaders = { ...opts.defaultHeaders, 'api-key': this.apiKey };
|
|
// }
|
|
|
|
// if (process.env.OPENAI_ORGANIZATION) {
|
|
// opts.organization = process.env.OPENAI_ORGANIZATION;
|
|
// }
|
|
|
|
// if (this.options.addParams && typeof this.options.addParams === 'object') {
|
|
// modelOptions = {
|
|
// ...modelOptions,
|
|
// ...this.options.addParams,
|
|
// };
|
|
// logger.debug('[api/server/controllers/agents/client.js #chatCompletion] added params', {
|
|
// addParams: this.options.addParams,
|
|
// modelOptions,
|
|
// });
|
|
// }
|
|
|
|
// if (this.options.dropParams && Array.isArray(this.options.dropParams)) {
|
|
// this.options.dropParams.forEach((param) => {
|
|
// delete modelOptions[param];
|
|
// });
|
|
// logger.debug('[api/server/controllers/agents/client.js #chatCompletion] dropped params', {
|
|
// dropParams: this.options.dropParams,
|
|
// modelOptions,
|
|
// });
|
|
// }
|
|
|
|
/** @type {TCustomConfig['endpoints']['agents']} */
|
|
const agentsEConfig = this.options.req.app.locals[EModelEndpoint.agents];
|
|
|
|
config = {
|
|
configurable: {
|
|
thread_id: this.conversationId,
|
|
last_agent_index: this.agentConfigs?.size ?? 0,
|
|
user_id: this.user ?? this.options.req.user?.id,
|
|
hide_sequential_outputs: this.options.agent.hide_sequential_outputs,
|
|
},
|
|
recursionLimit: agentsEConfig?.recursionLimit,
|
|
signal: abortController.signal,
|
|
streamMode: 'values',
|
|
version: 'v2',
|
|
};
|
|
|
|
const toolSet = new Set((this.options.agent.tools ?? []).map((tool) => tool && tool.name));
|
|
let { messages: initialMessages, indexTokenCountMap } = formatAgentMessages(
|
|
payload,
|
|
this.indexTokenCountMap,
|
|
toolSet,
|
|
);
|
|
if (legacyContentEndpoints.has(this.options.agent.endpoint)) {
|
|
initialMessages = formatContentStrings(initialMessages);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param {Agent} agent
|
|
* @param {BaseMessage[]} messages
|
|
* @param {number} [i]
|
|
* @param {TMessageContentParts[]} [contentData]
|
|
* @param {Record<string, number>} [currentIndexCountMap]
|
|
*/
|
|
const runAgent = async (agent, _messages, i = 0, contentData = [], _currentIndexCountMap) => {
|
|
config.configurable.model = agent.model_parameters.model;
|
|
const currentIndexCountMap = _currentIndexCountMap ?? indexTokenCountMap;
|
|
if (i > 0) {
|
|
this.model = agent.model_parameters.model;
|
|
}
|
|
if (agent.recursion_limit && typeof agent.recursion_limit === 'number') {
|
|
config.recursionLimit = agent.recursion_limit;
|
|
}
|
|
if (
|
|
agentsEConfig?.maxRecursionLimit &&
|
|
config.recursionLimit > agentsEConfig?.maxRecursionLimit
|
|
) {
|
|
config.recursionLimit = agentsEConfig?.maxRecursionLimit;
|
|
}
|
|
config.configurable.agent_id = agent.id;
|
|
config.configurable.name = agent.name;
|
|
config.configurable.agent_index = i;
|
|
const noSystemMessages = noSystemModelRegex.some((regex) =>
|
|
agent.model_parameters.model.match(regex),
|
|
);
|
|
|
|
const systemMessage = Object.values(agent.toolContextMap ?? {})
|
|
.join('\n')
|
|
.trim();
|
|
|
|
let systemContent = [
|
|
systemMessage,
|
|
agent.instructions ?? '',
|
|
i !== 0 ? (agent.additional_instructions ?? '') : '',
|
|
]
|
|
.join('\n')
|
|
.trim();
|
|
|
|
if (noSystemMessages === true) {
|
|
agent.instructions = undefined;
|
|
agent.additional_instructions = undefined;
|
|
} else {
|
|
agent.instructions = systemContent;
|
|
agent.additional_instructions = undefined;
|
|
}
|
|
|
|
if (noSystemMessages === true && systemContent?.length) {
|
|
let latestMessage = _messages.pop().content;
|
|
if (typeof latestMessage !== 'string') {
|
|
latestMessage = latestMessage[0].text;
|
|
}
|
|
latestMessage = [systemContent, latestMessage].join('\n');
|
|
_messages.push(new HumanMessage(latestMessage));
|
|
}
|
|
|
|
let messages = _messages;
|
|
if (
|
|
agent.model_parameters?.clientOptions?.defaultHeaders?.['anthropic-beta']?.includes(
|
|
'prompt-caching',
|
|
)
|
|
) {
|
|
messages = addCacheControl(messages);
|
|
}
|
|
|
|
run = await createRun({
|
|
agent,
|
|
req: this.options.req,
|
|
runId: this.responseMessageId,
|
|
signal: abortController.signal,
|
|
customHandlers: this.options.eventHandlers,
|
|
});
|
|
|
|
if (!run) {
|
|
throw new Error('Failed to create run');
|
|
}
|
|
|
|
if (i === 0) {
|
|
this.run = run;
|
|
}
|
|
|
|
if (contentData.length) {
|
|
const agentUpdate = {
|
|
type: ContentTypes.AGENT_UPDATE,
|
|
[ContentTypes.AGENT_UPDATE]: {
|
|
index: contentData.length,
|
|
runId: this.responseMessageId,
|
|
agentId: agent.id,
|
|
},
|
|
};
|
|
const streamData = {
|
|
event: GraphEvents.ON_AGENT_UPDATE,
|
|
data: agentUpdate,
|
|
};
|
|
this.options.aggregateContent(streamData);
|
|
sendEvent(this.options.res, streamData);
|
|
contentData.push(agentUpdate);
|
|
run.Graph.contentData = contentData;
|
|
}
|
|
|
|
const encoding = this.getEncoding();
|
|
await run.processStream({ messages }, config, {
|
|
keepContent: i !== 0,
|
|
tokenCounter: createTokenCounter(encoding),
|
|
indexTokenCountMap: currentIndexCountMap,
|
|
maxContextTokens: agent.maxContextTokens,
|
|
callbacks: {
|
|
[Callback.TOOL_ERROR]: logToolError,
|
|
},
|
|
});
|
|
|
|
config.signal = null;
|
|
};
|
|
|
|
await runAgent(this.options.agent, initialMessages);
|
|
let finalContentStart = 0;
|
|
if (
|
|
this.agentConfigs &&
|
|
this.agentConfigs.size > 0 &&
|
|
(await checkCapability(this.options.req, AgentCapabilities.chain))
|
|
) {
|
|
const windowSize = 5;
|
|
let latestMessage = initialMessages.pop().content;
|
|
if (typeof latestMessage !== 'string') {
|
|
latestMessage = latestMessage[0].text;
|
|
}
|
|
let i = 1;
|
|
let runMessages = [];
|
|
|
|
const windowIndexCountMap = {};
|
|
const windowMessages = initialMessages.slice(-windowSize);
|
|
let currentIndex = 4;
|
|
for (let i = initialMessages.length - 1; i >= 0; i--) {
|
|
windowIndexCountMap[currentIndex] = indexTokenCountMap[i];
|
|
currentIndex--;
|
|
if (currentIndex < 0) {
|
|
break;
|
|
}
|
|
}
|
|
const encoding = this.getEncoding();
|
|
const tokenCounter = createTokenCounter(encoding);
|
|
for (const [agentId, agent] of this.agentConfigs) {
|
|
if (abortController.signal.aborted === true) {
|
|
break;
|
|
}
|
|
const currentRun = await run;
|
|
|
|
if (
|
|
i === this.agentConfigs.size &&
|
|
config.configurable.hide_sequential_outputs === true
|
|
) {
|
|
const content = this.contentParts.filter(
|
|
(part) => part.type === ContentTypes.TOOL_CALL,
|
|
);
|
|
|
|
this.options.res.write(
|
|
`event: message\ndata: ${JSON.stringify({
|
|
event: 'on_content_update',
|
|
data: {
|
|
runId: this.responseMessageId,
|
|
content,
|
|
},
|
|
})}\n\n`,
|
|
);
|
|
}
|
|
const _runMessages = currentRun.Graph.getRunMessages();
|
|
finalContentStart = this.contentParts.length;
|
|
runMessages = runMessages.concat(_runMessages);
|
|
const contentData = currentRun.Graph.contentData.slice();
|
|
const bufferString = getBufferString([new HumanMessage(latestMessage), ...runMessages]);
|
|
if (i === this.agentConfigs.size) {
|
|
logger.debug(`SEQUENTIAL AGENTS: Last buffer string:\n${bufferString}`);
|
|
}
|
|
try {
|
|
const contextMessages = [];
|
|
const runIndexCountMap = {};
|
|
for (let i = 0; i < windowMessages.length; i++) {
|
|
const message = windowMessages[i];
|
|
const messageType = message._getType();
|
|
if (
|
|
(!agent.tools || agent.tools.length === 0) &&
|
|
(messageType === 'tool' || (message.tool_calls?.length ?? 0) > 0)
|
|
) {
|
|
continue;
|
|
}
|
|
runIndexCountMap[contextMessages.length] = windowIndexCountMap[i];
|
|
contextMessages.push(message);
|
|
}
|
|
const bufferMessage = new HumanMessage(bufferString);
|
|
runIndexCountMap[contextMessages.length] = tokenCounter(bufferMessage);
|
|
const currentMessages = [...contextMessages, bufferMessage];
|
|
await runAgent(agent, currentMessages, i, contentData, runIndexCountMap);
|
|
} catch (err) {
|
|
logger.error(
|
|
`[api/server/controllers/agents/client.js #chatCompletion] Error running agent ${agentId} (${i})`,
|
|
err,
|
|
);
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/** Note: not implemented */
|
|
if (config.configurable.hide_sequential_outputs !== true) {
|
|
finalContentStart = 0;
|
|
}
|
|
|
|
this.contentParts = this.contentParts.filter((part, index) => {
|
|
// Include parts that are either:
|
|
// 1. At or after the finalContentStart index
|
|
// 2. Of type tool_call
|
|
// 3. Have tool_call_ids property
|
|
return (
|
|
index >= finalContentStart || part.type === ContentTypes.TOOL_CALL || part.tool_call_ids
|
|
);
|
|
});
|
|
|
|
try {
|
|
await this.recordCollectedUsage({ context: 'message' });
|
|
} catch (err) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #chatCompletion] Error recording collected usage',
|
|
err,
|
|
);
|
|
}
|
|
} catch (err) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #sendCompletion] Operation aborted',
|
|
err,
|
|
);
|
|
if (!abortController.signal.aborted) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #sendCompletion] Unhandled error type',
|
|
err,
|
|
);
|
|
this.contentParts.push({
|
|
type: ContentTypes.ERROR,
|
|
[ContentTypes.ERROR]: `An error occurred while processing the request${err?.message ? `: ${err.message}` : ''}`,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param {Object} params
|
|
* @param {string} params.text
|
|
* @param {string} params.conversationId
|
|
*/
|
|
async titleConvo({ text, abortController }) {
|
|
if (!this.run) {
|
|
throw new Error('Run not initialized');
|
|
}
|
|
const { handleLLMEnd, collected: collectedMetadata } = createMetadataAggregator();
|
|
const endpoint = this.options.agent.endpoint;
|
|
const { req, res } = this.options;
|
|
/** @type {import('@librechat/agents').ClientOptions} */
|
|
let clientOptions = {
|
|
maxTokens: 75,
|
|
};
|
|
let endpointConfig = req.app.locals[endpoint];
|
|
if (!endpointConfig) {
|
|
try {
|
|
endpointConfig = await getCustomEndpointConfig(endpoint);
|
|
} catch (err) {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #titleConvo] Error getting custom endpoint config',
|
|
err,
|
|
);
|
|
}
|
|
}
|
|
if (
|
|
endpointConfig &&
|
|
endpointConfig.titleModel &&
|
|
endpointConfig.titleModel !== Constants.CURRENT_MODEL
|
|
) {
|
|
clientOptions.model = endpointConfig.titleModel;
|
|
}
|
|
if (
|
|
endpoint === EModelEndpoint.azureOpenAI &&
|
|
clientOptions.model &&
|
|
this.options.agent.model_parameters.model !== clientOptions.model
|
|
) {
|
|
clientOptions =
|
|
(
|
|
await initOpenAI({
|
|
req,
|
|
res,
|
|
optionsOnly: true,
|
|
overrideModel: clientOptions.model,
|
|
overrideEndpoint: endpoint,
|
|
endpointOption: {
|
|
model_parameters: clientOptions,
|
|
},
|
|
})
|
|
)?.llmConfig ?? clientOptions;
|
|
}
|
|
if (/\b(o1|o3)\b/i.test(clientOptions.model) && clientOptions.maxTokens != null) {
|
|
delete clientOptions.maxTokens;
|
|
}
|
|
try {
|
|
const titleResult = await this.run.generateTitle({
|
|
inputText: text,
|
|
contentParts: this.contentParts,
|
|
clientOptions,
|
|
chainOptions: {
|
|
signal: abortController.signal,
|
|
callbacks: [
|
|
{
|
|
handleLLMEnd,
|
|
},
|
|
],
|
|
},
|
|
});
|
|
|
|
const collectedUsage = collectedMetadata.map((item) => {
|
|
let input_tokens, output_tokens;
|
|
|
|
if (item.usage) {
|
|
input_tokens = item.usage.input_tokens || item.usage.inputTokens;
|
|
output_tokens = item.usage.output_tokens || item.usage.outputTokens;
|
|
} else if (item.tokenUsage) {
|
|
input_tokens = item.tokenUsage.promptTokens;
|
|
output_tokens = item.tokenUsage.completionTokens;
|
|
}
|
|
|
|
return {
|
|
input_tokens: input_tokens,
|
|
output_tokens: output_tokens,
|
|
};
|
|
});
|
|
|
|
await this.recordCollectedUsage({
|
|
model: clientOptions.model,
|
|
context: 'title',
|
|
collectedUsage,
|
|
}).catch((err) => {
|
|
logger.error(
|
|
'[api/server/controllers/agents/client.js #titleConvo] Error recording collected usage',
|
|
err,
|
|
);
|
|
});
|
|
|
|
return titleResult.title;
|
|
} catch (err) {
|
|
logger.error('[api/server/controllers/agents/client.js #titleConvo] Error', err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/** Silent method, as `recordCollectedUsage` is used instead */
|
|
async recordTokenUsage() {}
|
|
|
|
getEncoding() {
|
|
return 'o200k_base';
|
|
}
|
|
|
|
/**
|
|
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
|
|
* @param {string} text - The text to get the token count for.
|
|
* @returns {number} The token count of the given text.
|
|
*/
|
|
getTokenCount(text) {
|
|
const encoding = this.getEncoding();
|
|
return Tokenizer.getTokenCount(text, encoding);
|
|
}
|
|
}
|
|
|
|
module.exports = AgentClient;
|