LibreChat/api/utils/tokens.js
Danny Avila cd7f3a51e1
🧠 feat: Cohere support as Custom Endpoint (#2328)
* chore: bump cohere-ai, fix firebase vulnerabilities by going down versions

* feat: cohere rates and context windows

* feat(createCoherePayload): transform openai payload for cohere compatibility

* feat: cohere backend support

* refactor(UnknownIcon): optimize icon render and add cohere

* docs: add cohere to Compatible AI Endpoints

* Update ai_endpoints.md
2024-04-05 15:19:41 -04:00

239 lines
6.8 KiB
JavaScript

const z = require('zod');
const { EModelEndpoint } = require('librechat-data-provider');
const models = [
'text-davinci-003',
'text-davinci-002',
'text-davinci-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
'davinci',
'curie',
'babbage',
'ada',
'code-davinci-002',
'code-davinci-001',
'code-cushman-002',
'code-cushman-001',
'davinci-codex',
'cushman-codex',
'text-davinci-edit-001',
'code-davinci-edit-001',
'text-embedding-ada-002',
'text-similarity-davinci-001',
'text-similarity-curie-001',
'text-similarity-babbage-001',
'text-similarity-ada-001',
'text-search-davinci-doc-001',
'text-search-curie-doc-001',
'text-search-babbage-doc-001',
'text-search-ada-doc-001',
'code-search-babbage-code-001',
'code-search-ada-code-001',
'gpt2',
'gpt-4',
'gpt-4-0314',
'gpt-4-32k',
'gpt-4-32k-0314',
'gpt-3.5-turbo',
'gpt-3.5-turbo-0301',
];
const openAIModels = {
'gpt-4': 8187, // -5 from max
'gpt-4-0613': 8187, // -5 from max
'gpt-4-32k': 32758, // -10 from max
'gpt-4-32k-0314': 32758, // -10 from max
'gpt-4-32k-0613': 32758, // -10 from max
'gpt-4-1106': 127990, // -10 from max
'gpt-4-0125': 127990, // -10 from max
'gpt-4-turbo': 127990, // -10 from max
'gpt-3.5-turbo': 4092, // -5 from max
'gpt-3.5-turbo-0613': 4092, // -5 from max
'gpt-3.5-turbo-0301': 4092, // -5 from max
'gpt-3.5-turbo-16k': 16375, // -10 from max
'gpt-3.5-turbo-16k-0613': 16375, // -10 from max
'gpt-3.5-turbo-1106': 16375, // -10 from max
'gpt-3.5-turbo-0125': 16375, // -10 from max
'mistral-': 31990, // -10 from max
};
const cohereModels = {
'command-light': 4086, // -10 from max
'command-light-nightly': 8182, // -10 from max
command: 4086, // -10 from max
'command-nightly': 8182, // -10 from max
'command-r': 127500, // -500 from max
'command-r-plus:': 127500, // -500 from max
};
const googleModels = {
/* Max I/O is combined so we subtract the amount from max response tokens for actual total */
gemini: 32750, // -10 from max
'text-bison-32k': 32758, // -10 from max
'chat-bison-32k': 32758, // -10 from max
'code-bison-32k': 32758, // -10 from max
'codechat-bison-32k': 32758,
/* Codey, -5 from max: 6144 */
'code-': 6139,
'codechat-': 6139,
/* PaLM2, -5 from max: 8192 */
'text-': 8187,
'chat-': 8187,
};
const anthropicModels = {
'claude-': 100000,
'claude-2': 100000,
'claude-2.1': 200000,
'claude-3-haiku': 200000,
'claude-3-sonnet': 200000,
'claude-3-opus': 200000,
};
const aggregateModels = { ...openAIModels, ...googleModels, ...anthropicModels, ...cohereModels };
// Order is important here: by model series and context size (gpt-4 then gpt-3, ascending)
const maxTokensMap = {
[EModelEndpoint.azureOpenAI]: openAIModels,
[EModelEndpoint.openAI]: aggregateModels,
[EModelEndpoint.custom]: aggregateModels,
[EModelEndpoint.google]: googleModels,
[EModelEndpoint.anthropic]: anthropicModels,
};
/**
* Retrieves the maximum tokens for a given model name. If the exact model name isn't found,
* it searches for partial matches within the model name, checking keys in reverse order.
*
* @param {string} modelName - The name of the model to look up.
* @param {string} endpoint - The endpoint (default is 'openAI').
* @param {EndpointTokenConfig} [endpointTokenConfig] - Token Config for current endpoint to use for max tokens lookup
* @returns {number|undefined} The maximum tokens for the given model or undefined if no match is found.
*
* @example
* getModelMaxTokens('gpt-4-32k-0613'); // Returns 32767
* getModelMaxTokens('gpt-4-32k-unknown'); // Returns 32767
* getModelMaxTokens('unknown-model'); // Returns undefined
*/
function getModelMaxTokens(modelName, endpoint = EModelEndpoint.openAI, endpointTokenConfig) {
if (typeof modelName !== 'string') {
return undefined;
}
/** @type {EndpointTokenConfig | Record<string, number>} */
const tokensMap = endpointTokenConfig ?? maxTokensMap[endpoint];
if (!tokensMap) {
return undefined;
}
if (tokensMap[modelName]?.context) {
return tokensMap[modelName].context;
}
if (tokensMap[modelName]) {
return tokensMap[modelName];
}
const keys = Object.keys(tokensMap);
for (let i = keys.length - 1; i >= 0; i--) {
if (modelName.includes(keys[i])) {
const result = tokensMap[keys[i]];
return result?.context ?? result;
}
}
return undefined;
}
/**
* Retrieves the model name key for a given model name input. If the exact model name isn't found,
* it searches for partial matches within the model name, checking keys in reverse order.
*
* @param {string} modelName - The name of the model to look up.
* @param {string} endpoint - The endpoint (default is 'openAI').
* @returns {string|undefined} The model name key for the given model; returns input if no match is found and is string.
*
* @example
* matchModelName('gpt-4-32k-0613'); // Returns 'gpt-4-32k-0613'
* matchModelName('gpt-4-32k-unknown'); // Returns 'gpt-4-32k'
* matchModelName('unknown-model'); // Returns undefined
*/
function matchModelName(modelName, endpoint = EModelEndpoint.openAI) {
if (typeof modelName !== 'string') {
return undefined;
}
const tokensMap = maxTokensMap[endpoint];
if (!tokensMap) {
return modelName;
}
if (tokensMap[modelName]) {
return modelName;
}
const keys = Object.keys(tokensMap);
for (let i = keys.length - 1; i >= 0; i--) {
const modelKey = keys[i];
if (modelName.includes(modelKey)) {
return modelKey;
}
}
return modelName;
}
const modelSchema = z.object({
id: z.string(),
pricing: z.object({
prompt: z.string(),
completion: z.string(),
}),
context_length: z.number(),
});
const inputSchema = z.object({
data: z.array(modelSchema),
});
/**
* Processes a list of model data from an API and organizes it into structured data based on URL and specifics of rates and context.
* @param {{ data: Array<z.infer<typeof modelSchema>> }} input The input object containing base URL and data fetched from the API.
* @returns {EndpointTokenConfig} The processed model data.
*/
function processModelData(input) {
const validationResult = inputSchema.safeParse(input);
if (!validationResult.success) {
throw new Error('Invalid input data');
}
const { data } = validationResult.data;
/** @type {EndpointTokenConfig} */
const tokenConfig = {};
for (const model of data) {
const modelKey = model.id;
const prompt = parseFloat(model.pricing.prompt) * 1000000;
const completion = parseFloat(model.pricing.completion) * 1000000;
tokenConfig[modelKey] = {
prompt,
completion,
context: model.context_length,
};
}
return tokenConfig;
}
module.exports = {
tiktokenModels: new Set(models),
maxTokensMap,
inputSchema,
modelSchema,
getModelMaxTokens,
matchModelName,
processModelData,
};