mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-16 16:30:15 +01:00
Some checks failed
Docker Dev Branch Images Build / build (Dockerfile, lc-dev, node) (push) Waiting to run
Docker Dev Branch Images Build / build (Dockerfile.multi, lc-dev-api, api-build) (push) Waiting to run
Docker Dev Images Build / build (Dockerfile, librechat-dev, node) (push) Has been cancelled
Docker Dev Images Build / build (Dockerfile.multi, librechat-dev-api, api-build) (push) Has been cancelled
Sync Locize Translations & Create Translation PR / Sync Translation Keys with Locize (push) Has been cancelled
Sync Locize Translations & Create Translation PR / Create Translation PR on Version Published (push) Has been cancelled
* 🔧 fix: Correct URL Construction in fetchModels Function Updated the URL construction in the fetchModels function to ensure proper formatting by removing trailing slashes from the base URL. This change prevents potential issues with API endpoint calls. * 🔧 fix: Remove OLLAMA from Known Custom Providers Updated the isKnownCustomProvider function and providerConfigMap to exclude OLLAMA as a known custom provider, streamlining the provider checks and configurations. * 🔧 test: Enhance fetchModels Tests for URL Construction Added new test cases to validate the URL construction in the fetchModels function, ensuring it handles trailing slashes correctly and appends query parameters as expected. This improves the robustness of the API endpoint calls. * chore: remove ollama provider-specific handling * chore: Refactor imports to use isUserProvided from @librechat/api
355 lines
10 KiB
JavaScript
355 lines
10 KiB
JavaScript
const axios = require('axios');
|
|
const { logger } = require('@librechat/data-schemas');
|
|
const { HttpsProxyAgent } = require('https-proxy-agent');
|
|
const { logAxiosError, inputSchema, processModelData, isUserProvided } = require('@librechat/api');
|
|
const {
|
|
CacheKeys,
|
|
defaultModels,
|
|
KnownEndpoints,
|
|
EModelEndpoint,
|
|
} = require('librechat-data-provider');
|
|
const { OllamaClient } = require('~/app/clients/OllamaClient');
|
|
const getLogStores = require('~/cache/getLogStores');
|
|
const { extractBaseURL } = require('~/utils');
|
|
|
|
/**
|
|
* Splits a string by commas and trims each resulting value.
|
|
* @param {string} input - The input string to split.
|
|
* @returns {string[]} An array of trimmed values.
|
|
*/
|
|
const splitAndTrim = (input) => {
|
|
if (!input || typeof input !== 'string') {
|
|
return [];
|
|
}
|
|
return input
|
|
.split(',')
|
|
.map((item) => item.trim())
|
|
.filter(Boolean);
|
|
};
|
|
|
|
const { openAIApiKey, userProvidedOpenAI } = require('./Config/EndpointService').config;
|
|
|
|
/**
|
|
* Fetches OpenAI models from the specified base API path or Azure, based on the provided configuration.
|
|
*
|
|
* @param {Object} params - The parameters for fetching the models.
|
|
* @param {Object} params.user - The user ID to send to the API.
|
|
* @param {string} params.apiKey - The API key for authentication with the API.
|
|
* @param {string} params.baseURL - The base path URL for the API.
|
|
* @param {string} [params.name='OpenAI'] - The name of the API; defaults to 'OpenAI'.
|
|
* @param {boolean} [params.direct=false] - Whether `directEndpoint` was configured
|
|
* @param {boolean} [params.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [params.userIdQuery=false] - Whether to send the user ID as a query parameter.
|
|
* @param {boolean} [params.createTokenConfig=true] - Whether to create a token configuration from the API response.
|
|
* @param {string} [params.tokenKey] - The cache key to save the token configuration. Uses `name` if omitted.
|
|
* @param {Record<string, string>} [params.headers] - Optional headers for the request.
|
|
* @param {Partial<IUser>} [params.userObject] - Optional user object for header resolution.
|
|
* @returns {Promise<string[]>} A promise that resolves to an array of model identifiers.
|
|
* @async
|
|
*/
|
|
const fetchModels = async ({
|
|
user,
|
|
apiKey,
|
|
baseURL: _baseURL,
|
|
name = EModelEndpoint.openAI,
|
|
direct,
|
|
azure = false,
|
|
userIdQuery = false,
|
|
createTokenConfig = true,
|
|
tokenKey,
|
|
headers,
|
|
userObject,
|
|
}) => {
|
|
let models = [];
|
|
const baseURL = direct ? extractBaseURL(_baseURL) : _baseURL;
|
|
|
|
if (!baseURL && !azure) {
|
|
return models;
|
|
}
|
|
|
|
if (!apiKey) {
|
|
return models;
|
|
}
|
|
|
|
if (name && name.toLowerCase().startsWith(KnownEndpoints.ollama)) {
|
|
try {
|
|
return await OllamaClient.fetchModels(baseURL, { headers, user: userObject });
|
|
} catch (ollamaError) {
|
|
const logMessage =
|
|
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.';
|
|
logAxiosError({ message: logMessage, error: ollamaError });
|
|
}
|
|
}
|
|
|
|
try {
|
|
const options = {
|
|
headers: {
|
|
...(headers ?? {}),
|
|
},
|
|
timeout: 5000,
|
|
};
|
|
|
|
if (name === EModelEndpoint.anthropic) {
|
|
options.headers = {
|
|
'x-api-key': apiKey,
|
|
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
|
|
};
|
|
} else {
|
|
options.headers.Authorization = `Bearer ${apiKey}`;
|
|
}
|
|
|
|
if (process.env.PROXY) {
|
|
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
|
|
}
|
|
|
|
if (process.env.OPENAI_ORGANIZATION && baseURL.includes('openai')) {
|
|
options.headers['OpenAI-Organization'] = process.env.OPENAI_ORGANIZATION;
|
|
}
|
|
|
|
const url = new URL(`${baseURL.replace(/\/+$/, '')}${azure ? '' : '/models'}`);
|
|
if (user && userIdQuery) {
|
|
url.searchParams.append('user', user);
|
|
}
|
|
const res = await axios.get(url.toString(), options);
|
|
|
|
/** @type {z.infer<typeof inputSchema>} */
|
|
const input = res.data;
|
|
|
|
const validationResult = inputSchema.safeParse(input);
|
|
if (validationResult.success && createTokenConfig) {
|
|
const endpointTokenConfig = processModelData(input);
|
|
const cache = getLogStores(CacheKeys.TOKEN_CONFIG);
|
|
await cache.set(tokenKey ?? name, endpointTokenConfig);
|
|
}
|
|
models = input.data.map((item) => item.id);
|
|
} catch (error) {
|
|
const logMessage = `Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`;
|
|
logAxiosError({ message: logMessage, error });
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
/**
|
|
* Fetches models from the specified API path or Azure, based on the provided options.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {boolean} [opts.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [opts.assistants=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [opts.plugins=false] - Whether to fetch models from the plugins.
|
|
* @param {string[]} [_models=[]] - The models to use as a fallback.
|
|
*/
|
|
const fetchOpenAIModels = async (opts, _models = []) => {
|
|
let models = _models.slice() ?? [];
|
|
let apiKey = openAIApiKey;
|
|
const openaiBaseURL = 'https://api.openai.com/v1';
|
|
let baseURL = openaiBaseURL;
|
|
let reverseProxyUrl = process.env.OPENAI_REVERSE_PROXY;
|
|
|
|
if (opts.assistants && process.env.ASSISTANTS_BASE_URL) {
|
|
reverseProxyUrl = process.env.ASSISTANTS_BASE_URL;
|
|
} else if (opts.azure) {
|
|
return models;
|
|
// const azure = getAzureCredentials();
|
|
// baseURL = (genAzureChatCompletion(azure))
|
|
// .split('/deployments')[0]
|
|
// .concat(`/models?api-version=${azure.azureOpenAIApiVersion}`);
|
|
// apiKey = azureOpenAIApiKey;
|
|
}
|
|
|
|
if (reverseProxyUrl) {
|
|
baseURL = extractBaseURL(reverseProxyUrl);
|
|
}
|
|
|
|
const modelsCache = getLogStores(CacheKeys.MODEL_QUERIES);
|
|
|
|
const cachedModels = await modelsCache.get(baseURL);
|
|
if (cachedModels) {
|
|
return cachedModels;
|
|
}
|
|
|
|
if (baseURL || opts.azure) {
|
|
models = await fetchModels({
|
|
apiKey,
|
|
baseURL,
|
|
azure: opts.azure,
|
|
user: opts.user,
|
|
name: EModelEndpoint.openAI,
|
|
});
|
|
}
|
|
|
|
if (models.length === 0) {
|
|
return _models;
|
|
}
|
|
|
|
if (baseURL === openaiBaseURL) {
|
|
const regex = /(text-davinci-003|gpt-|o\d+)/;
|
|
const excludeRegex = /audio|realtime/;
|
|
models = models.filter((model) => regex.test(model) && !excludeRegex.test(model));
|
|
const instructModels = models.filter((model) => model.includes('instruct'));
|
|
const otherModels = models.filter((model) => !model.includes('instruct'));
|
|
models = otherModels.concat(instructModels);
|
|
}
|
|
|
|
await modelsCache.set(baseURL, models);
|
|
return models;
|
|
};
|
|
|
|
/**
|
|
* Loads the default models for the application.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {boolean} [opts.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [opts.plugins=false] - Whether to fetch models for the plugins endpoint.
|
|
* @param {boolean} [opts.assistants=false] - Whether to fetch models for the Assistants endpoint.
|
|
*/
|
|
const getOpenAIModels = async (opts) => {
|
|
let models = defaultModels[EModelEndpoint.openAI];
|
|
|
|
if (opts.assistants) {
|
|
models = defaultModels[EModelEndpoint.assistants];
|
|
} else if (opts.azure) {
|
|
models = defaultModels[EModelEndpoint.azureAssistants];
|
|
}
|
|
|
|
if (opts.plugins) {
|
|
models = models.filter(
|
|
(model) =>
|
|
!model.includes('text-davinci') &&
|
|
!model.includes('instruct') &&
|
|
!model.includes('0613') &&
|
|
!model.includes('0314') &&
|
|
!model.includes('0301'),
|
|
);
|
|
}
|
|
|
|
let key;
|
|
if (opts.assistants) {
|
|
key = 'ASSISTANTS_MODELS';
|
|
} else if (opts.azure) {
|
|
key = 'AZURE_OPENAI_MODELS';
|
|
} else if (opts.plugins) {
|
|
key = 'PLUGIN_MODELS';
|
|
} else {
|
|
key = 'OPENAI_MODELS';
|
|
}
|
|
|
|
if (process.env[key]) {
|
|
models = splitAndTrim(process.env[key]);
|
|
return models;
|
|
}
|
|
|
|
if (userProvidedOpenAI) {
|
|
return models;
|
|
}
|
|
|
|
return await fetchOpenAIModels(opts, models);
|
|
};
|
|
|
|
const getChatGPTBrowserModels = () => {
|
|
let models = ['text-davinci-002-render-sha', 'gpt-4'];
|
|
if (process.env.CHATGPT_MODELS) {
|
|
models = splitAndTrim(process.env.CHATGPT_MODELS);
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
/**
|
|
* Fetches models from the Anthropic API.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {string[]} [_models=[]] - The models to use as a fallback.
|
|
*/
|
|
const fetchAnthropicModels = async (opts, _models = []) => {
|
|
let models = _models.slice() ?? [];
|
|
let apiKey = process.env.ANTHROPIC_API_KEY;
|
|
const anthropicBaseURL = 'https://api.anthropic.com/v1';
|
|
let baseURL = anthropicBaseURL;
|
|
let reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
|
|
|
|
if (reverseProxyUrl) {
|
|
baseURL = extractBaseURL(reverseProxyUrl);
|
|
}
|
|
|
|
if (!apiKey) {
|
|
return models;
|
|
}
|
|
|
|
const modelsCache = getLogStores(CacheKeys.MODEL_QUERIES);
|
|
|
|
const cachedModels = await modelsCache.get(baseURL);
|
|
if (cachedModels) {
|
|
return cachedModels;
|
|
}
|
|
|
|
if (baseURL) {
|
|
models = await fetchModels({
|
|
apiKey,
|
|
baseURL,
|
|
user: opts.user,
|
|
name: EModelEndpoint.anthropic,
|
|
tokenKey: EModelEndpoint.anthropic,
|
|
});
|
|
}
|
|
|
|
if (models.length === 0) {
|
|
return _models;
|
|
}
|
|
|
|
await modelsCache.set(baseURL, models);
|
|
return models;
|
|
};
|
|
|
|
const getAnthropicModels = async (opts = {}) => {
|
|
let models = defaultModels[EModelEndpoint.anthropic];
|
|
if (process.env.ANTHROPIC_MODELS) {
|
|
models = splitAndTrim(process.env.ANTHROPIC_MODELS);
|
|
return models;
|
|
}
|
|
|
|
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
|
|
return models;
|
|
}
|
|
|
|
try {
|
|
return await fetchAnthropicModels(opts, models);
|
|
} catch (error) {
|
|
logger.error('Error fetching Anthropic models:', error);
|
|
return models;
|
|
}
|
|
};
|
|
|
|
const getGoogleModels = () => {
|
|
let models = defaultModels[EModelEndpoint.google];
|
|
if (process.env.GOOGLE_MODELS) {
|
|
models = splitAndTrim(process.env.GOOGLE_MODELS);
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
const getBedrockModels = () => {
|
|
let models = defaultModels[EModelEndpoint.bedrock];
|
|
if (process.env.BEDROCK_AWS_MODELS) {
|
|
models = splitAndTrim(process.env.BEDROCK_AWS_MODELS);
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
module.exports = {
|
|
fetchModels,
|
|
splitAndTrim,
|
|
getOpenAIModels,
|
|
getBedrockModels,
|
|
getChatGPTBrowserModels,
|
|
getAnthropicModels,
|
|
getGoogleModels,
|
|
};
|