mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-02-20 09:24:10 +01:00
* chore: move database model methods to /packages/data-schemas * chore: add TypeScript ESLint rule to warn on unused variables * refactor: model imports to streamline access - Consolidated model imports across various files to improve code organization and reduce redundancy. - Updated imports for models such as Assistant, Message, Conversation, and others to a unified import path. - Adjusted middleware and service files to reflect the new import structure, ensuring functionality remains intact. - Enhanced test files to align with the new import paths, maintaining test coverage and integrity. * chore: migrate database models to packages/data-schemas and refactor all direct Mongoose Model usage outside of data-schemas * test: update agent model mocks in unit tests - Added `getAgent` mock to `client.test.js` to enhance test coverage for agent-related functionality. - Removed redundant `getAgent` and `getAgents` mocks from `openai.spec.js` and `responses.unit.spec.js` to streamline test setup and reduce duplication. - Ensured consistency in agent mock implementations across test files. * fix: update types in data-schemas * refactor: enhance type definitions in transaction and spending methods - Updated type definitions in `checkBalance.ts` to use specific request and response types. - Refined `spendTokens.ts` to utilize a new `SpendTxData` interface for better clarity and type safety. - Improved transaction handling in `transaction.ts` by introducing `TransactionResult` and `TxData` interfaces, ensuring consistent data structures across methods. - Adjusted unit tests in `transaction.spec.ts` to accommodate new type definitions and enhance robustness. * refactor: streamline model imports and enhance code organization - Consolidated model imports across various controllers and services to a unified import path, improving code clarity and reducing redundancy. - Updated multiple files to reflect the new import structure, ensuring all functionalities remain intact. - Enhanced overall code organization by removing duplicate import statements and optimizing the usage of model methods. * feat: implement loadAddedAgent and refactor agent loading logic - Introduced `loadAddedAgent` function to handle loading agents from added conversations, supporting multi-convo parallel execution. - Created a new `load.ts` file to encapsulate agent loading functionalities, including `loadEphemeralAgent` and `loadAgent`. - Updated the `index.ts` file to export the new `load` module instead of the deprecated `loadAgent`. - Enhanced type definitions and improved error handling in the agent loading process. - Adjusted unit tests to reflect changes in the agent loading structure and ensure comprehensive coverage. * refactor: enhance balance handling with new update interface - Introduced `IBalanceUpdate` interface to streamline balance update operations across the codebase. - Updated `upsertBalanceFields` method signatures in `balance.ts`, `transaction.ts`, and related tests to utilize the new interface for improved type safety. - Adjusted type imports in `balance.spec.ts` to include `IBalanceUpdate`, ensuring consistency in balance management functionalities. - Enhanced overall code clarity and maintainability by refining type definitions related to balance operations. * feat: add unit tests for loadAgent functionality and enhance agent loading logic - Introduced comprehensive unit tests for the `loadAgent` function, covering various scenarios including null and empty agent IDs, loading of ephemeral agents, and permission checks. - Enhanced the `initializeClient` function by moving `getConvoFiles` to the correct position in the database method exports, ensuring proper functionality. - Improved test coverage for agent loading, including handling of non-existent agents and user permissions. * chore: reorder memory method exports for consistency - Moved `deleteAllUserMemories` to the correct position in the exported memory methods, ensuring a consistent and logical order of method exports in `memory.ts`.
298 lines
8.9 KiB
JavaScript
298 lines
8.9 KiB
JavaScript
const { logger } = require('@librechat/data-schemas');
|
|
const { isAssistantsEndpoint, ErrorTypes } = require('librechat-data-provider');
|
|
const {
|
|
isEnabled,
|
|
sendEvent,
|
|
countTokens,
|
|
GenerationJobManager,
|
|
sanitizeMessageForTransmit,
|
|
} = require('@librechat/api');
|
|
const { spendTokens, spendStructuredTokens, saveMessage, getConvo } = require('~/models');
|
|
const { truncateText, smartTruncateText } = require('~/app/clients/prompts');
|
|
const clearPendingReq = require('~/cache/clearPendingReq');
|
|
const { sendError } = require('~/server/middleware/error');
|
|
const { abortRun } = require('./abortRun');
|
|
|
|
/**
|
|
* Spend tokens for all models from collected usage.
|
|
* This handles both sequential and parallel agent execution.
|
|
*
|
|
* IMPORTANT: After spending, this function clears the collectedUsage array
|
|
* to prevent double-spending. The array is shared with AgentClient.collectedUsage,
|
|
* so clearing it here prevents the finally block from also spending tokens.
|
|
*
|
|
* @param {Object} params
|
|
* @param {string} params.userId - User ID
|
|
* @param {string} params.conversationId - Conversation ID
|
|
* @param {Array<Object>} params.collectedUsage - Usage metadata from all models
|
|
* @param {string} [params.fallbackModel] - Fallback model name if not in usage
|
|
*/
|
|
async function spendCollectedUsage({ userId, conversationId, collectedUsage, fallbackModel }) {
|
|
if (!collectedUsage || collectedUsage.length === 0) {
|
|
return;
|
|
}
|
|
|
|
const spendPromises = [];
|
|
|
|
for (const usage of collectedUsage) {
|
|
if (!usage) {
|
|
continue;
|
|
}
|
|
|
|
// Support both OpenAI format (input_token_details) and Anthropic format (cache_*_input_tokens)
|
|
const cache_creation =
|
|
Number(usage.input_token_details?.cache_creation) ||
|
|
Number(usage.cache_creation_input_tokens) ||
|
|
0;
|
|
const cache_read =
|
|
Number(usage.input_token_details?.cache_read) || Number(usage.cache_read_input_tokens) || 0;
|
|
|
|
const txMetadata = {
|
|
context: 'abort',
|
|
conversationId,
|
|
user: userId,
|
|
model: usage.model ?? fallbackModel,
|
|
};
|
|
|
|
if (cache_creation > 0 || cache_read > 0) {
|
|
spendPromises.push(
|
|
spendStructuredTokens(txMetadata, {
|
|
promptTokens: {
|
|
input: usage.input_tokens,
|
|
write: cache_creation,
|
|
read: cache_read,
|
|
},
|
|
completionTokens: usage.output_tokens,
|
|
}).catch((err) => {
|
|
logger.error('[abortMiddleware] Error spending structured tokens for abort', err);
|
|
}),
|
|
);
|
|
continue;
|
|
}
|
|
|
|
spendPromises.push(
|
|
spendTokens(txMetadata, {
|
|
promptTokens: usage.input_tokens,
|
|
completionTokens: usage.output_tokens,
|
|
}).catch((err) => {
|
|
logger.error('[abortMiddleware] Error spending tokens for abort', err);
|
|
}),
|
|
);
|
|
}
|
|
|
|
// Wait for all token spending to complete
|
|
await Promise.all(spendPromises);
|
|
|
|
// Clear the array to prevent double-spending from the AgentClient finally block.
|
|
// The collectedUsage array is shared by reference with AgentClient.collectedUsage,
|
|
// so clearing it here ensures recordCollectedUsage() sees an empty array and returns early.
|
|
collectedUsage.length = 0;
|
|
}
|
|
|
|
/**
|
|
* Abort an active message generation.
|
|
* Uses GenerationJobManager for all agent requests.
|
|
* Since streamId === conversationId, we can directly abort by conversationId.
|
|
*/
|
|
async function abortMessage(req, res) {
|
|
const { abortKey, endpoint } = req.body;
|
|
|
|
if (isAssistantsEndpoint(endpoint)) {
|
|
return await abortRun(req, res);
|
|
}
|
|
|
|
const conversationId = abortKey?.split(':')?.[0] ?? req.user.id;
|
|
const userId = req.user.id;
|
|
|
|
// Use GenerationJobManager to abort the job (streamId === conversationId)
|
|
const abortResult = await GenerationJobManager.abortJob(conversationId);
|
|
|
|
if (!abortResult.success) {
|
|
if (!res.headersSent) {
|
|
return res.status(204).send({ message: 'Request not found' });
|
|
}
|
|
return;
|
|
}
|
|
|
|
const { jobData, content, text, collectedUsage } = abortResult;
|
|
|
|
const completionTokens = await countTokens(text);
|
|
const promptTokens = jobData?.promptTokens ?? 0;
|
|
|
|
const responseMessage = {
|
|
messageId: jobData?.responseMessageId,
|
|
parentMessageId: jobData?.userMessage?.messageId,
|
|
conversationId: jobData?.conversationId,
|
|
content,
|
|
text,
|
|
sender: jobData?.sender ?? 'AI',
|
|
finish_reason: 'incomplete',
|
|
endpoint: jobData?.endpoint,
|
|
iconURL: jobData?.iconURL,
|
|
model: jobData?.model,
|
|
unfinished: false,
|
|
error: false,
|
|
isCreatedByUser: false,
|
|
tokenCount: completionTokens,
|
|
};
|
|
|
|
// Spend tokens for ALL models from collectedUsage (handles parallel agents/addedConvo)
|
|
if (collectedUsage && collectedUsage.length > 0) {
|
|
await spendCollectedUsage({
|
|
userId,
|
|
conversationId: jobData?.conversationId,
|
|
collectedUsage,
|
|
fallbackModel: jobData?.model,
|
|
});
|
|
} else {
|
|
// Fallback: no collected usage, use text-based token counting for primary model only
|
|
await spendTokens(
|
|
{ ...responseMessage, context: 'incomplete', user: userId },
|
|
{ promptTokens, completionTokens },
|
|
);
|
|
}
|
|
|
|
await saveMessage(
|
|
{
|
|
userId: req?.user?.id,
|
|
isTemporary: req?.body?.isTemporary,
|
|
interfaceConfig: req?.config?.interfaceConfig,
|
|
},
|
|
{ ...responseMessage, user: userId },
|
|
{ context: 'api/server/middleware/abortMiddleware.js' },
|
|
);
|
|
|
|
// Get conversation for title
|
|
const conversation = await getConvo(userId, conversationId);
|
|
|
|
const finalEvent = {
|
|
title: conversation && !conversation.title ? null : conversation?.title || 'New Chat',
|
|
final: true,
|
|
conversation,
|
|
requestMessage: jobData?.userMessage
|
|
? sanitizeMessageForTransmit({
|
|
messageId: jobData.userMessage.messageId,
|
|
parentMessageId: jobData.userMessage.parentMessageId,
|
|
conversationId: jobData.userMessage.conversationId,
|
|
text: jobData.userMessage.text,
|
|
isCreatedByUser: true,
|
|
})
|
|
: null,
|
|
responseMessage,
|
|
};
|
|
|
|
logger.debug(
|
|
`[abortMessage] ID: ${userId} | ${req.user.email} | Aborted request: ${conversationId}`,
|
|
);
|
|
|
|
if (res.headersSent) {
|
|
return sendEvent(res, finalEvent);
|
|
}
|
|
|
|
res.setHeader('Content-Type', 'application/json');
|
|
res.send(JSON.stringify(finalEvent));
|
|
}
|
|
|
|
const handleAbort = function () {
|
|
return async function (req, res) {
|
|
try {
|
|
if (isEnabled(process.env.LIMIT_CONCURRENT_MESSAGES)) {
|
|
await clearPendingReq({ userId: req.user.id });
|
|
}
|
|
return await abortMessage(req, res);
|
|
} catch (err) {
|
|
logger.error('[abortMessage] handleAbort error', err);
|
|
}
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Handle abort errors during generation.
|
|
* @param {ServerResponse} res
|
|
* @param {ServerRequest} req
|
|
* @param {Error | unknown} error
|
|
* @param {Partial<TMessage> & { partialText?: string }} data
|
|
* @returns {Promise<void>}
|
|
*/
|
|
const handleAbortError = async (res, req, error, data) => {
|
|
if (error?.message?.includes('base64')) {
|
|
logger.error('[handleAbortError] Error in base64 encoding', {
|
|
...error,
|
|
stack: smartTruncateText(error?.stack, 1000),
|
|
message: truncateText(error.message, 350),
|
|
});
|
|
} else {
|
|
logger.error('[handleAbortError] AI response error; aborting request:', error);
|
|
}
|
|
const { sender, conversationId, messageId, parentMessageId, userMessageId, partialText } = data;
|
|
|
|
if (error.stack && error.stack.includes('google')) {
|
|
logger.warn(
|
|
`AI Response error for conversation ${conversationId} likely caused by Google censor/filter`,
|
|
);
|
|
}
|
|
|
|
let errorText = error?.message?.includes('"type"')
|
|
? error.message
|
|
: 'An error occurred while processing your request. Please contact the Admin.';
|
|
|
|
if (error?.type === ErrorTypes.INVALID_REQUEST) {
|
|
errorText = `{"type":"${ErrorTypes.INVALID_REQUEST}"}`;
|
|
}
|
|
|
|
if (error?.message?.includes("does not support 'system'")) {
|
|
errorText = `{"type":"${ErrorTypes.NO_SYSTEM_MESSAGES}"}`;
|
|
}
|
|
|
|
/**
|
|
* @param {string} partialText
|
|
* @returns {Promise<void>}
|
|
*/
|
|
const respondWithError = async (partialText) => {
|
|
const endpointOption = req.body?.endpointOption;
|
|
let options = {
|
|
sender,
|
|
messageId,
|
|
conversationId,
|
|
parentMessageId,
|
|
text: errorText,
|
|
user: req.user.id,
|
|
spec: endpointOption?.spec,
|
|
iconURL: endpointOption?.iconURL,
|
|
modelLabel: endpointOption?.modelLabel,
|
|
shouldSaveMessage: userMessageId != null,
|
|
model: endpointOption?.modelOptions?.model || req.body?.model,
|
|
};
|
|
|
|
if (req.body?.agent_id) {
|
|
options.agent_id = req.body.agent_id;
|
|
}
|
|
|
|
if (partialText) {
|
|
options = {
|
|
...options,
|
|
error: false,
|
|
unfinished: true,
|
|
text: partialText,
|
|
};
|
|
}
|
|
|
|
await sendError(req, res, options);
|
|
};
|
|
|
|
if (partialText && partialText.length > 5) {
|
|
try {
|
|
return await abortMessage(req, res);
|
|
} catch (err) {
|
|
logger.error('[handleAbortError] error while trying to abort message', err);
|
|
return respondWithError(partialText);
|
|
}
|
|
} else {
|
|
return respondWithError();
|
|
}
|
|
};
|
|
|
|
module.exports = {
|
|
handleAbort,
|
|
handleAbortError,
|
|
};
|