LibreChat/api/server/controllers/agents/client.js
Danny Avila a0291ed155
🚧 chore: merge latest dev build to main repo (#3844)
* agents - phase 1 (#30)

* chore: copy assistant files

* feat: frontend and data-provider

* feat: backend get endpoint test

* fix(MessageEndpointIcon): switched to AgentName and AgentAvatar

* fix: small fixes

* fix: agent endpoint config

* fix: show Agent Builder

* chore: install agentus

* chore: initial scaffolding for agents

* fix: updated Assistant logic to Agent Logic for some Agent components

* WIP first pass, demo of agent package

* WIP: initial backend infra for agents

* fix: agent list error

* wip: agents routing

* chore: Refactor useSSE hook to handle different data events

* wip: correctly emit events

* chore: Update @librechat/agentus npm dependency to version 1.0.9

* remove comment

* first pass: streaming agent text

* chore: Remove @librechat/agentus root-level workspace npm dependency

* feat: Agent Schema and Model

* fix: content handling fixes

* fix: content message save

* WIP: new content data

* fix: run step issue with tool calls

* chore: Update @librechat/agentus npm dependency to version 1.1.5

* feat: update controller and agent routes

* wip: initial backend tool and tool error handling support

* wip: tool chunks

* chore: Update @librechat/agentus npm dependency to version 1.1.7

* chore: update tool_call typing, add test conditions and logs

* fix: create agent

* fix: create agent

* first pass: render completed content parts

* fix: remove logging, fix step handler typing

* chore: Update @librechat/agentus npm dependency to version 1.1.9

* refactor: cleanup maps on unmount

* chore: Update BaseClient.js to safely count tokens for string, number, and boolean values

* fix: support subsequent messages with tool_calls

* chore: export order

* fix: select agent

* fix: tool call types and handling

* chore: switch to anthropic for testing

* fix: AgentSelect

* refactor: experimental: OpenAIClient to use array for intermediateReply

* fix(useSSE): revert old condition for streaming legacy client tokens

* fix: lint

* revert `agent_id` to `id`

* chore: update localization keys for agent-related components

* feat: zod schema handling for actions

* refactor(actions): if no params, no zodSchema

* chore: Update @librechat/agentus npm dependency to version 1.2.1

* feat: first pass, actions

* refactor: empty schema for actions without params

* feat: Update createRun function to accept additional options

* fix: message payload formatting; feat: add more client options

* fix: ToolCall component rendering when action has no args but has output

* refactor(ToolCall): allow non-stringy args

* WIP: first pass, correctly formatted tool_calls between providers

* refactor: Remove duplicate import of 'roles' module

* refactor: Exclude 'vite.config.ts' from TypeScript compilation

* refactor: fix agent related types
> - no need to use endpoint/model fields for identifying agent metadata
> - add `provider` distinction for agent-configured 'endpoint'
- no need for agent-endpoint map
- reduce complexity of tools as functions into tools as string[]
- fix types related to above changes
- reduce unnecessary variables for queries/mutations and corresponding react-query keys

* refactor: Add tools and tool_kwargs fields to agent schema

* refactor: Remove unused code and update dependencies

* refactor: Update updateAgentHandler to use req.body directly

* refactor: Update AgentSelect component to use localized hooks

* refactor: Update agent schema to include tools and provider fields

* refactor(AgentPanel): add scrollbar gutter, add provider field to form, fix agent schema required values

* refactor: Update AgentSwitcher component to use selectedAgentId instead of selectedAgent

* refactor: Update AgentPanel component to include alternateName import and defaultAgentFormValues

* refactor(SelectDropDown): allow setting value as option while still supporting legacy usage (string values only)

* refactor: SelectDropdown changes - Only necessary when the available values are objects with label/value fields and the selected value is expected to be a string.

* refactor: TypeError issues and handle provider as option

* feat: Add placeholder for provider selection in AgentPanel component

* refactor: Update agent schema to include author and provider fields

* fix: show expected 'create agent' placeholder when creating agent

* chore: fix localization strings, hide capabilities form for now

* chore: typing

* refactor: import order and use compact agents schema for now

* chore: typing

* refactor: Update AgentForm type to use AgentCapabilities

* fix agent form agent selection issues

* feat: responsive agent selection

* fix: Handle cancelled fetch in useSelectAgent hook

* fix: reset agent form on accordion close/open

* feat: Add agent_id to default conversation for agents endpoint

* feat: agents endpoint request handling

* refactor: reset conversation model on agent select

* refactor: add `additional_instructions` to conversation schema, organize other fields

* chore: casing

* chore: types

* refactor(loadAgentTools): explicitly pass agent_id, do not pass `model` to loadAgentTools for now, load action sets by agent_id

* WIP: initial draft of real agent client initialization

* WIP: first pass, anthropic agent requests

* feat: remember last selected agent

* feat: openai and azure connected

* fix: prioritize agent model for runs unless an explicit override model is passed from client

* feat: Agent Actions

* fix: save agent id to convo

* feat: model panel (#29)

* feat: model panel

* bring back comments

* fix: method still null

* fix: AgentPanel FormContext

* feat: add more parameters

* fix: style issues; refactor: Agent Controller

* fix: cherry-pick

* fix: Update AgentAvatar component to use AssistantIcon instead of BrainCircuit

* feat: OGDialog for delete agent; feat(assistant): update Agent types, introduced `model_parameters`

* feat: icon and general `model_parameters` update

* feat: use react-hook-form better

* fix: agent builder form reset issue when switching panels

* refactor: modularize agent builder form

---------

Co-authored-by: Danny Avila <danny@librechat.ai>

* fix: AgentPanel and ModelPanel type issues and use `useFormContext` and `watch` instead of `methods` directly and `useWatch`.

* fix: tool call issues due to invalid input (anthropic) of empty string

* fix: handle empty text in Part component

---------

Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com>

* refactor: remove form ModelPanel and fixed nested ternary expressions in AgentConfig

* fix: Model Parameters not saved correctly

* refactor: remove console log

* feat: avatar upload and get for Agents (#36)

Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com>

* chore: update to public package

* fix: typing, optional chaining

* fix: cursor not showing for content parts

* chore: conditionally enable agents

* ci: fix azure test

* ci: fix frontend tests, fix eslint api

* refactor: Remove unused errorContentPart variable

* continue of the agent message PR (#40)

* last fixes

* fix: agentMap

* pr merge test  (#41)

* fix: model icon not fetching correctly

* remove console logs

* feat: agent name

* refactor: pass documentsMap as a prop to allow re-render of assistant form

* refactor: pass documentsMap as a prop to allow re-render of assistant form

* chore: Bump version to 0.7.419

* fix: TypeError: Cannot read properties of undefined (reading 'id')

* refactor: update AgentSwitcher component to use ControlCombobox instead of Combobox

---------

Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com>
2024-08-31 16:33:51 -04:00

462 lines
14 KiB
JavaScript

// const { HttpsProxyAgent } = require('https-proxy-agent');
// const {
// Constants,
// ImageDetail,
// EModelEndpoint,
// resolveHeaders,
// validateVisionModel,
// mapModelToAzureConfig,
// } = require('librechat-data-provider');
const { Callback } = require('@librechat/agents');
const {
EModelEndpoint,
providerEndpointMap,
removeNullishValues,
} = require('librechat-data-provider');
const {
extractBaseURL,
// constructAzureURL,
// genAzureChatCompletion,
} = require('~/utils');
const {
formatMessage,
formatAgentMessages,
createContextHandlers,
} = require('~/app/clients/prompts');
const Tokenizer = require('~/server/services/Tokenizer');
const BaseClient = require('~/app/clients/BaseClient');
// const { sleep } = require('~/server/utils');
const { createRun } = require('./run');
const { logger } = require('~/config');
class AgentClient extends BaseClient {
constructor(options = {}) {
super(options);
/** @type {'discard' | 'summarize'} */
this.contextStrategy = 'discard';
/** @deprecated @type {true} - Is a Chat Completion Request */
this.isChatCompletion = true;
const { maxContextTokens, modelOptions = {}, ...clientOptions } = options;
this.modelOptions = modelOptions;
this.maxContextTokens = maxContextTokens;
this.options = Object.assign({ endpoint: EModelEndpoint.agents }, clientOptions);
}
setOptions(options) {
logger.info('[api/server/controllers/agents/client.js] setOptions', options);
}
/**
*
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
* - Sets `this.modelOptions.model` to `gpt-4-vision-preview` if the request is a vision request.
* - Sets `this.isVisionModel` to `true` if vision request.
* - Deletes `this.modelOptions.stop` if vision request.
* @param {MongoFile[]} attachments
*/
checkVisionRequest(attachments) {
logger.info(
'[api/server/controllers/agents/client.js #checkVisionRequest] not implemented',
attachments,
);
// if (!attachments) {
// return;
// }
// const availableModels = this.options.modelsConfig?.[this.options.endpoint];
// if (!availableModels) {
// return;
// }
// let visionRequestDetected = false;
// for (const file of attachments) {
// if (file?.type?.includes('image')) {
// visionRequestDetected = true;
// break;
// }
// }
// if (!visionRequestDetected) {
// return;
// }
// this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
// if (this.isVisionModel) {
// delete this.modelOptions.stop;
// return;
// }
// for (const model of availableModels) {
// if (!validateVisionModel({ model, availableModels })) {
// continue;
// }
// this.modelOptions.model = model;
// this.isVisionModel = true;
// delete this.modelOptions.stop;
// return;
// }
// if (!availableModels.includes(this.defaultVisionModel)) {
// return;
// }
// if (!validateVisionModel({ model: this.defaultVisionModel, availableModels })) {
// return;
// }
// this.modelOptions.model = this.defaultVisionModel;
// this.isVisionModel = true;
// delete this.modelOptions.stop;
}
getSaveOptions() {
return removeNullishValues(
Object.assign(
{
agent_id: this.options.agent.id,
modelLabel: this.options.modelLabel,
maxContextTokens: this.options.maxContextTokens,
resendFiles: this.options.resendFiles,
imageDetail: this.options.imageDetail,
spec: this.options.spec,
},
this.modelOptions,
{
model: undefined,
// TODO:
// would need to be override settings; otherwise, model needs to be undefined
// model: this.override.model,
// instructions: this.override.instructions,
// additional_instructions: this.override.additional_instructions,
},
),
);
}
getBuildMessagesOptions(opts) {
return {
instructions: opts.instructions,
additional_instructions: opts.additional_instructions,
};
}
async buildMessages(
messages,
parentMessageId,
{ instructions = null, additional_instructions = null },
opts,
) {
let orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
summary: this.shouldSummarize,
});
let payload;
/** @type {{ role: string; name: string; content: string } | undefined} */
let systemMessage;
/** @type {number | undefined} */
let promptTokens;
/** @type {string} */
let systemContent = `${instructions ?? ''}${additional_instructions ?? ''}`;
if (this.options.attachments) {
const attachments = await this.options.attachments;
if (this.message_file_map) {
this.message_file_map[orderedMessages[orderedMessages.length - 1].messageId] = attachments;
} else {
this.message_file_map = {
[orderedMessages[orderedMessages.length - 1].messageId]: attachments,
};
}
const files = await this.addImageURLs(
orderedMessages[orderedMessages.length - 1],
attachments,
);
this.options.attachments = files;
}
if (this.message_file_map) {
this.contextHandlers = createContextHandlers(
this.options.req,
orderedMessages[orderedMessages.length - 1].text,
);
}
const formattedMessages = orderedMessages.map((message, i) => {
const formattedMessage = formatMessage({
message,
userName: this.options?.name,
assistantName: this.options?.modelLabel,
});
const needsTokenCount = this.contextStrategy && !orderedMessages[i].tokenCount;
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
}
/* If message has files, calculate image token cost */
// if (this.message_file_map && this.message_file_map[message.messageId]) {
// const attachments = this.message_file_map[message.messageId];
// for (const file of attachments) {
// if (file.embedded) {
// this.contextHandlers?.processFile(file);
// continue;
// }
// orderedMessages[i].tokenCount += this.calculateImageTokenCost({
// width: file.width,
// height: file.height,
// detail: this.options.imageDetail ?? ImageDetail.auto,
// });
// }
// }
return formattedMessage;
});
if (this.contextHandlers) {
this.augmentedPrompt = await this.contextHandlers.createContext();
systemContent = this.augmentedPrompt + systemContent;
}
if (systemContent) {
systemContent = `${systemContent.trim()}`;
systemMessage = {
role: 'system',
name: 'instructions',
content: systemContent,
};
if (this.contextStrategy) {
const instructionTokens = this.getTokenCountForMessage(systemMessage);
if (instructionTokens >= 0) {
const firstMessageTokens = orderedMessages[0].tokenCount ?? 0;
orderedMessages[0].tokenCount = firstMessageTokens + instructionTokens;
}
}
}
if (this.contextStrategy) {
({ payload, promptTokens, messages } = await this.handleContextStrategy({
orderedMessages,
formattedMessages,
/* prefer usage_metadata from final message */
buildTokenMap: false,
}));
}
const result = {
prompt: payload,
promptTokens,
messages,
};
if (promptTokens >= 0 && typeof opts?.getReqData === 'function') {
opts.getReqData({ promptTokens });
}
return result;
}
/** @type {sendCompletion} */
async sendCompletion(payload, opts = {}) {
this.modelOptions.user = this.user;
return await this.chatCompletion({
payload,
onProgress: opts.onProgress,
abortController: opts.abortController,
});
}
// async recordTokenUsage({ promptTokens, completionTokens, context = 'message' }) {
// await spendTokens(
// {
// context,
// model: this.modelOptions.model,
// conversationId: this.conversationId,
// user: this.user ?? this.options.req.user?.id,
// endpointTokenConfig: this.options.endpointTokenConfig,
// },
// { promptTokens, completionTokens },
// );
// }
async chatCompletion({ payload, abortController = null }) {
try {
if (!abortController) {
abortController = new AbortController();
}
const baseURL = extractBaseURL(this.completionsUrl);
logger.debug('[api/server/controllers/agents/client.js] chatCompletion', {
baseURL,
payload,
});
// if (this.useOpenRouter) {
// opts.defaultHeaders = {
// 'HTTP-Referer': 'https://librechat.ai',
// 'X-Title': 'LibreChat',
// };
// }
// if (this.options.headers) {
// opts.defaultHeaders = { ...opts.defaultHeaders, ...this.options.headers };
// }
// if (this.options.proxy) {
// opts.httpAgent = new HttpsProxyAgent(this.options.proxy);
// }
// if (this.isVisionModel) {
// modelOptions.max_tokens = 4000;
// }
// /** @type {TAzureConfig | undefined} */
// const azureConfig = this.options?.req?.app?.locals?.[EModelEndpoint.azureOpenAI];
// if (
// (this.azure && this.isVisionModel && azureConfig) ||
// (azureConfig && this.isVisionModel && this.options.endpoint === EModelEndpoint.azureOpenAI)
// ) {
// const { modelGroupMap, groupMap } = azureConfig;
// const {
// azureOptions,
// baseURL,
// headers = {},
// serverless,
// } = mapModelToAzureConfig({
// modelName: modelOptions.model,
// modelGroupMap,
// groupMap,
// });
// opts.defaultHeaders = resolveHeaders(headers);
// this.langchainProxy = extractBaseURL(baseURL);
// this.apiKey = azureOptions.azureOpenAIApiKey;
// const groupName = modelGroupMap[modelOptions.model].group;
// this.options.addParams = azureConfig.groupMap[groupName].addParams;
// this.options.dropParams = azureConfig.groupMap[groupName].dropParams;
// // Note: `forcePrompt` not re-assigned as only chat models are vision models
// this.azure = !serverless && azureOptions;
// this.azureEndpoint =
// !serverless && genAzureChatCompletion(this.azure, modelOptions.model, this);
// }
// if (this.azure || this.options.azure) {
// /* Azure Bug, extremely short default `max_tokens` response */
// if (!modelOptions.max_tokens && modelOptions.model === 'gpt-4-vision-preview') {
// modelOptions.max_tokens = 4000;
// }
// /* Azure does not accept `model` in the body, so we need to remove it. */
// delete modelOptions.model;
// opts.baseURL = this.langchainProxy
// ? constructAzureURL({
// baseURL: this.langchainProxy,
// azureOptions: this.azure,
// })
// : this.azureEndpoint.split(/(?<!\/)\/(chat|completion)\//)[0];
// opts.defaultQuery = { 'api-version': this.azure.azureOpenAIApiVersion };
// opts.defaultHeaders = { ...opts.defaultHeaders, 'api-key': this.apiKey };
// }
// if (process.env.OPENAI_ORGANIZATION) {
// opts.organization = process.env.OPENAI_ORGANIZATION;
// }
// if (this.options.addParams && typeof this.options.addParams === 'object') {
// modelOptions = {
// ...modelOptions,
// ...this.options.addParams,
// };
// logger.debug('[api/server/controllers/agents/client.js #chatCompletion] added params', {
// addParams: this.options.addParams,
// modelOptions,
// });
// }
// if (this.options.dropParams && Array.isArray(this.options.dropParams)) {
// this.options.dropParams.forEach((param) => {
// delete modelOptions[param];
// });
// logger.debug('[api/server/controllers/agents/client.js #chatCompletion] dropped params', {
// dropParams: this.options.dropParams,
// modelOptions,
// });
// }
// const streamRate = this.options.streamRate ?? Constants.DEFAULT_STREAM_RATE;
const run = await createRun({
agent: this.options.agent,
tools: this.options.tools,
toolMap: this.options.toolMap,
runId: this.responseMessageId,
modelOptions: this.modelOptions,
customHandlers: this.options.eventHandlers,
});
const config = {
configurable: {
provider: providerEndpointMap[this.options.agent.provider],
thread_id: this.conversationId,
},
run_id: this.responseMessageId,
streamMode: 'values',
version: 'v2',
};
if (!run) {
throw new Error('Failed to create run');
}
const messages = formatAgentMessages(payload);
const runMessages = await run.processStream({ messages }, config, {
[Callback.TOOL_ERROR]: (graph, error, toolId) => {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Tool Error',
error,
toolId,
);
},
});
// console.dir(runMessages, { depth: null });
return runMessages;
} catch (err) {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Unhandled error type',
err,
);
throw err;
}
}
getEncoding() {
return this.modelOptions.model?.includes('gpt-4o') ? 'o200k_base' : 'cl100k_base';
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
}
module.exports = AgentClient;