LibreChat/api/models/tx.js
Danny Avila 9d854dac07
🤖 feat: Gemini 1.5 Support (+Vertex AI) (#2383)
* WIP: gemini-1.5 support

* feat: extended vertex ai support

* fix: handle possibly undefined modelName

* fix: gpt-4-turbo-preview invalid vision model

* feat: specify `fileConfig.imageOutputType` and make PNG default image conversion type

* feat: better truncation for errors including base64 strings

* fix: gemini inlineData formatting

* feat: RAG augmented prompt for gemini-1.5

* feat: gemini-1.5 rates and token window

* chore: adjust tokens, update docs, update vision Models

* chore: add back `ChatGoogleVertexAI` for chat models via vertex ai

* refactor: ask/edit controllers to not use `unfinished` field for google endpoint

* chore: remove comment

* chore(ci): fix AppService test

* chore: remove comment

* refactor(GoogleSearch): use `GOOGLE_SEARCH_API_KEY` instead, issue warning for old variable

* chore: bump data-provider to 0.5.4

* chore: update docs

* fix: condition for gemini-1.5 using generative ai lib

* chore: update docs

* ci: add additional AppService test for `imageOutputType`

* refactor: optimize new config value `imageOutputType`

* chore: bump CONFIG_VERSION

* fix(assistants): avatar upload
2024-04-16 08:32:40 -04:00

106 lines
4 KiB
JavaScript

const { matchModelName } = require('../utils');
const defaultRate = 6;
/**
* Mapping of model token sizes to their respective multipliers for prompt and completion.
* The rates are 1 USD per 1M tokens.
* @type {Object.<string, {prompt: number, completion: number}>}
*/
const tokenValues = {
'8k': { prompt: 30, completion: 60 },
'32k': { prompt: 60, completion: 120 },
'4k': { prompt: 1.5, completion: 2 },
'16k': { prompt: 3, completion: 4 },
'gpt-3.5-turbo-1106': { prompt: 1, completion: 2 },
'gpt-4-1106': { prompt: 10, completion: 30 },
'gpt-3.5-turbo-0125': { prompt: 0.5, completion: 1.5 },
'claude-3-opus': { prompt: 15, completion: 75 },
'claude-3-sonnet': { prompt: 3, completion: 15 },
'claude-3-haiku': { prompt: 0.25, completion: 1.25 },
'claude-2.1': { prompt: 8, completion: 24 },
'claude-2': { prompt: 8, completion: 24 },
'claude-': { prompt: 0.8, completion: 2.4 },
'command-r-plus': { prompt: 3, completion: 15 },
'command-r': { prompt: 0.5, completion: 1.5 },
/* cohere doesn't have rates for the older command models,
so this was from https://artificialanalysis.ai/models/command-light/providers */
command: { prompt: 0.38, completion: 0.38 },
// 'gemini-1.5': { prompt: 7, completion: 21 }, // May 2nd, 2024 pricing
// 'gemini': { prompt: 0.5, completion: 1.5 }, // May 2nd, 2024 pricing
'gemini-1.5': { prompt: 0, completion: 0 }, // currently free
gemini: { prompt: 0, completion: 0 }, // currently free
};
/**
* Retrieves the key associated with a given model name.
*
* @param {string} model - The model name to match.
* @param {string} endpoint - The endpoint name to match.
* @returns {string|undefined} The key corresponding to the model name, or undefined if no match is found.
*/
const getValueKey = (model, endpoint) => {
const modelName = matchModelName(model, endpoint);
if (!modelName) {
return undefined;
}
if (modelName.includes('gpt-3.5-turbo-16k')) {
return '16k';
} else if (modelName.includes('gpt-3.5-turbo-0125')) {
return 'gpt-3.5-turbo-0125';
} else if (modelName.includes('gpt-3.5-turbo-1106')) {
return 'gpt-3.5-turbo-1106';
} else if (modelName.includes('gpt-3.5')) {
return '4k';
} else if (modelName.includes('gpt-4-1106')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-0125')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-turbo')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-32k')) {
return '32k';
} else if (modelName.includes('gpt-4')) {
return '8k';
} else if (tokenValues[modelName]) {
return modelName;
}
return undefined;
};
/**
* Retrieves the multiplier for a given value key and token type. If no value key is provided,
* it attempts to derive it from the model name.
*
* @param {Object} params - The parameters for the function.
* @param {string} [params.valueKey] - The key corresponding to the model name.
* @param {string} [params.tokenType] - The type of token (e.g., 'prompt' or 'completion').
* @param {string} [params.model] - The model name to derive the value key from if not provided.
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
* @returns {number} The multiplier for the given parameters, or a default value if not found.
*/
const getMultiplier = ({ valueKey, tokenType, model, endpoint, endpointTokenConfig }) => {
if (endpointTokenConfig) {
return endpointTokenConfig?.[model]?.[tokenType] ?? defaultRate;
}
if (valueKey && tokenType) {
return tokenValues[valueKey][tokenType] ?? defaultRate;
}
if (!tokenType || !model) {
return 1;
}
valueKey = getValueKey(model, endpoint);
if (!valueKey) {
return defaultRate;
}
// If we got this far, and values[tokenType] is undefined somehow, return a rough average of default multipliers
return tokenValues[valueKey][tokenType] ?? defaultRate;
};
module.exports = { tokenValues, getValueKey, getMultiplier, defaultRate };