mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-17 08:50:15 +01:00
* agents - phase 1 (#30) * chore: copy assistant files * feat: frontend and data-provider * feat: backend get endpoint test * fix(MessageEndpointIcon): switched to AgentName and AgentAvatar * fix: small fixes * fix: agent endpoint config * fix: show Agent Builder * chore: install agentus * chore: initial scaffolding for agents * fix: updated Assistant logic to Agent Logic for some Agent components * WIP first pass, demo of agent package * WIP: initial backend infra for agents * fix: agent list error * wip: agents routing * chore: Refactor useSSE hook to handle different data events * wip: correctly emit events * chore: Update @librechat/agentus npm dependency to version 1.0.9 * remove comment * first pass: streaming agent text * chore: Remove @librechat/agentus root-level workspace npm dependency * feat: Agent Schema and Model * fix: content handling fixes * fix: content message save * WIP: new content data * fix: run step issue with tool calls * chore: Update @librechat/agentus npm dependency to version 1.1.5 * feat: update controller and agent routes * wip: initial backend tool and tool error handling support * wip: tool chunks * chore: Update @librechat/agentus npm dependency to version 1.1.7 * chore: update tool_call typing, add test conditions and logs * fix: create agent * fix: create agent * first pass: render completed content parts * fix: remove logging, fix step handler typing * chore: Update @librechat/agentus npm dependency to version 1.1.9 * refactor: cleanup maps on unmount * chore: Update BaseClient.js to safely count tokens for string, number, and boolean values * fix: support subsequent messages with tool_calls * chore: export order * fix: select agent * fix: tool call types and handling * chore: switch to anthropic for testing * fix: AgentSelect * refactor: experimental: OpenAIClient to use array for intermediateReply * fix(useSSE): revert old condition for streaming legacy client tokens * fix: lint * revert `agent_id` to `id` * chore: update localization keys for agent-related components * feat: zod schema handling for actions * refactor(actions): if no params, no zodSchema * chore: Update @librechat/agentus npm dependency to version 1.2.1 * feat: first pass, actions * refactor: empty schema for actions without params * feat: Update createRun function to accept additional options * fix: message payload formatting; feat: add more client options * fix: ToolCall component rendering when action has no args but has output * refactor(ToolCall): allow non-stringy args * WIP: first pass, correctly formatted tool_calls between providers * refactor: Remove duplicate import of 'roles' module * refactor: Exclude 'vite.config.ts' from TypeScript compilation * refactor: fix agent related types > - no need to use endpoint/model fields for identifying agent metadata > - add `provider` distinction for agent-configured 'endpoint' - no need for agent-endpoint map - reduce complexity of tools as functions into tools as string[] - fix types related to above changes - reduce unnecessary variables for queries/mutations and corresponding react-query keys * refactor: Add tools and tool_kwargs fields to agent schema * refactor: Remove unused code and update dependencies * refactor: Update updateAgentHandler to use req.body directly * refactor: Update AgentSelect component to use localized hooks * refactor: Update agent schema to include tools and provider fields * refactor(AgentPanel): add scrollbar gutter, add provider field to form, fix agent schema required values * refactor: Update AgentSwitcher component to use selectedAgentId instead of selectedAgent * refactor: Update AgentPanel component to include alternateName import and defaultAgentFormValues * refactor(SelectDropDown): allow setting value as option while still supporting legacy usage (string values only) * refactor: SelectDropdown changes - Only necessary when the available values are objects with label/value fields and the selected value is expected to be a string. * refactor: TypeError issues and handle provider as option * feat: Add placeholder for provider selection in AgentPanel component * refactor: Update agent schema to include author and provider fields * fix: show expected 'create agent' placeholder when creating agent * chore: fix localization strings, hide capabilities form for now * chore: typing * refactor: import order and use compact agents schema for now * chore: typing * refactor: Update AgentForm type to use AgentCapabilities * fix agent form agent selection issues * feat: responsive agent selection * fix: Handle cancelled fetch in useSelectAgent hook * fix: reset agent form on accordion close/open * feat: Add agent_id to default conversation for agents endpoint * feat: agents endpoint request handling * refactor: reset conversation model on agent select * refactor: add `additional_instructions` to conversation schema, organize other fields * chore: casing * chore: types * refactor(loadAgentTools): explicitly pass agent_id, do not pass `model` to loadAgentTools for now, load action sets by agent_id * WIP: initial draft of real agent client initialization * WIP: first pass, anthropic agent requests * feat: remember last selected agent * feat: openai and azure connected * fix: prioritize agent model for runs unless an explicit override model is passed from client * feat: Agent Actions * fix: save agent id to convo * feat: model panel (#29) * feat: model panel * bring back comments * fix: method still null * fix: AgentPanel FormContext * feat: add more parameters * fix: style issues; refactor: Agent Controller * fix: cherry-pick * fix: Update AgentAvatar component to use AssistantIcon instead of BrainCircuit * feat: OGDialog for delete agent; feat(assistant): update Agent types, introduced `model_parameters` * feat: icon and general `model_parameters` update * feat: use react-hook-form better * fix: agent builder form reset issue when switching panels * refactor: modularize agent builder form --------- Co-authored-by: Danny Avila <danny@librechat.ai> * fix: AgentPanel and ModelPanel type issues and use `useFormContext` and `watch` instead of `methods` directly and `useWatch`. * fix: tool call issues due to invalid input (anthropic) of empty string * fix: handle empty text in Part component --------- Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com> * refactor: remove form ModelPanel and fixed nested ternary expressions in AgentConfig * fix: Model Parameters not saved correctly * refactor: remove console log * feat: avatar upload and get for Agents (#36) Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com> * chore: update to public package * fix: typing, optional chaining * fix: cursor not showing for content parts * chore: conditionally enable agents * ci: fix azure test * ci: fix frontend tests, fix eslint api * refactor: Remove unused errorContentPart variable * continue of the agent message PR (#40) * last fixes * fix: agentMap * pr merge test (#41) * fix: model icon not fetching correctly * remove console logs * feat: agent name * refactor: pass documentsMap as a prop to allow re-render of assistant form * refactor: pass documentsMap as a prop to allow re-render of assistant form * chore: Bump version to 0.7.419 * fix: TypeError: Cannot read properties of undefined (reading 'id') * refactor: update AgentSwitcher component to use ControlCombobox instead of Combobox --------- Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com>
265 lines
7.5 KiB
JavaScript
265 lines
7.5 KiB
JavaScript
const z = require('zod');
|
|
const { EModelEndpoint } = require('librechat-data-provider');
|
|
|
|
const openAIModels = {
|
|
'gpt-4': 8187, // -5 from max
|
|
'gpt-4-0613': 8187, // -5 from max
|
|
'gpt-4-32k': 32758, // -10 from max
|
|
'gpt-4-32k-0314': 32758, // -10 from max
|
|
'gpt-4-32k-0613': 32758, // -10 from max
|
|
'gpt-4-1106': 127990, // -10 from max
|
|
'gpt-4-0125': 127990, // -10 from max
|
|
'gpt-4o': 127990, // -10 from max
|
|
'gpt-4o-mini': 127990, // -10 from max
|
|
'gpt-4o-2024-08-06': 127990, // -10 from max
|
|
'gpt-4-turbo': 127990, // -10 from max
|
|
'gpt-4-vision': 127990, // -10 from max
|
|
'gpt-3.5-turbo': 16375, // -10 from max
|
|
'gpt-3.5-turbo-0613': 4092, // -5 from max
|
|
'gpt-3.5-turbo-0301': 4092, // -5 from max
|
|
'gpt-3.5-turbo-16k': 16375, // -10 from max
|
|
'gpt-3.5-turbo-16k-0613': 16375, // -10 from max
|
|
'gpt-3.5-turbo-1106': 16375, // -10 from max
|
|
'gpt-3.5-turbo-0125': 16375, // -10 from max
|
|
'mistral-': 31990, // -10 from max
|
|
llama3: 8187, // -5 from max
|
|
'llama-3': 8187, // -5 from max
|
|
};
|
|
|
|
const cohereModels = {
|
|
'command-light': 4086, // -10 from max
|
|
'command-light-nightly': 8182, // -10 from max
|
|
command: 4086, // -10 from max
|
|
'command-nightly': 8182, // -10 from max
|
|
'command-r': 127500, // -500 from max
|
|
'command-r-plus': 127500, // -500 from max
|
|
};
|
|
|
|
const googleModels = {
|
|
/* Max I/O is combined so we subtract the amount from max response tokens for actual total */
|
|
gemini: 30720, // -2048 from max
|
|
'gemini-pro-vision': 12288, // -4096 from max
|
|
'gemini-1.5': 1048576, // -8192 from max
|
|
'text-bison-32k': 32758, // -10 from max
|
|
'chat-bison-32k': 32758, // -10 from max
|
|
'code-bison-32k': 32758, // -10 from max
|
|
'codechat-bison-32k': 32758,
|
|
/* Codey, -5 from max: 6144 */
|
|
'code-': 6139,
|
|
'codechat-': 6139,
|
|
/* PaLM2, -5 from max: 8192 */
|
|
'text-': 8187,
|
|
'chat-': 8187,
|
|
};
|
|
|
|
const anthropicModels = {
|
|
'claude-': 100000,
|
|
'claude-2': 100000,
|
|
'claude-2.1': 200000,
|
|
'claude-3-haiku': 200000,
|
|
'claude-3-sonnet': 200000,
|
|
'claude-3-opus': 200000,
|
|
'claude-3-5-sonnet': 200000,
|
|
'claude-3.5-sonnet': 200000,
|
|
};
|
|
|
|
const aggregateModels = { ...openAIModels, ...googleModels, ...anthropicModels, ...cohereModels };
|
|
|
|
const maxTokensMap = {
|
|
[EModelEndpoint.azureOpenAI]: openAIModels,
|
|
[EModelEndpoint.openAI]: aggregateModels,
|
|
[EModelEndpoint.agents]: aggregateModels,
|
|
[EModelEndpoint.custom]: aggregateModels,
|
|
[EModelEndpoint.google]: googleModels,
|
|
[EModelEndpoint.anthropic]: anthropicModels,
|
|
};
|
|
|
|
/**
|
|
* Finds the first matching pattern in the tokens map.
|
|
* @param {string} modelName
|
|
* @param {Record<string, number>} tokensMap
|
|
* @returns {string|null}
|
|
*/
|
|
function findMatchingPattern(modelName, tokensMap) {
|
|
const keys = Object.keys(tokensMap);
|
|
for (let i = keys.length - 1; i >= 0; i--) {
|
|
const modelKey = keys[i];
|
|
if (modelName.includes(modelKey)) {
|
|
return modelKey;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Retrieves the maximum tokens for a given model name. If the exact model name isn't found,
|
|
* it searches for partial matches within the model name, checking keys in reverse order.
|
|
*
|
|
* @param {string} modelName - The name of the model to look up.
|
|
* @param {string} endpoint - The endpoint (default is 'openAI').
|
|
* @param {EndpointTokenConfig} [endpointTokenConfig] - Token Config for current endpoint to use for max tokens lookup
|
|
* @returns {number|undefined} The maximum tokens for the given model or undefined if no match is found.
|
|
*
|
|
* @example
|
|
* getModelMaxTokens('gpt-4-32k-0613'); // Returns 32767
|
|
* getModelMaxTokens('gpt-4-32k-unknown'); // Returns 32767
|
|
* getModelMaxTokens('unknown-model'); // Returns undefined
|
|
*/
|
|
function getModelMaxTokens(modelName, endpoint = EModelEndpoint.openAI, endpointTokenConfig) {
|
|
if (typeof modelName !== 'string') {
|
|
return undefined;
|
|
}
|
|
|
|
/** @type {EndpointTokenConfig | Record<string, number>} */
|
|
const tokensMap = endpointTokenConfig ?? maxTokensMap[endpoint];
|
|
if (!tokensMap) {
|
|
return undefined;
|
|
}
|
|
|
|
if (tokensMap[modelName]?.context) {
|
|
return tokensMap[modelName].context;
|
|
}
|
|
|
|
if (tokensMap[modelName]) {
|
|
return tokensMap[modelName];
|
|
}
|
|
|
|
const matchedPattern = findMatchingPattern(modelName, tokensMap);
|
|
|
|
if (matchedPattern) {
|
|
const result = tokensMap[matchedPattern];
|
|
return result?.context ?? result;
|
|
}
|
|
|
|
return undefined;
|
|
}
|
|
|
|
/**
|
|
* Retrieves the model name key for a given model name input. If the exact model name isn't found,
|
|
* it searches for partial matches within the model name, checking keys in reverse order.
|
|
*
|
|
* @param {string} modelName - The name of the model to look up.
|
|
* @param {string} endpoint - The endpoint (default is 'openAI').
|
|
* @returns {string|undefined} The model name key for the given model; returns input if no match is found and is string.
|
|
*
|
|
* @example
|
|
* matchModelName('gpt-4-32k-0613'); // Returns 'gpt-4-32k-0613'
|
|
* matchModelName('gpt-4-32k-unknown'); // Returns 'gpt-4-32k'
|
|
* matchModelName('unknown-model'); // Returns undefined
|
|
*/
|
|
function matchModelName(modelName, endpoint = EModelEndpoint.openAI) {
|
|
if (typeof modelName !== 'string') {
|
|
return undefined;
|
|
}
|
|
|
|
const tokensMap = maxTokensMap[endpoint];
|
|
if (!tokensMap) {
|
|
return modelName;
|
|
}
|
|
|
|
if (tokensMap[modelName]) {
|
|
return modelName;
|
|
}
|
|
|
|
const matchedPattern = findMatchingPattern(modelName, tokensMap);
|
|
return matchedPattern || modelName;
|
|
}
|
|
|
|
const modelSchema = z.object({
|
|
id: z.string(),
|
|
pricing: z.object({
|
|
prompt: z.string(),
|
|
completion: z.string(),
|
|
}),
|
|
context_length: z.number(),
|
|
});
|
|
|
|
const inputSchema = z.object({
|
|
data: z.array(modelSchema),
|
|
});
|
|
|
|
/**
|
|
* Processes a list of model data from an API and organizes it into structured data based on URL and specifics of rates and context.
|
|
* @param {{ data: Array<z.infer<typeof modelSchema>> }} input The input object containing base URL and data fetched from the API.
|
|
* @returns {EndpointTokenConfig} The processed model data.
|
|
*/
|
|
function processModelData(input) {
|
|
const validationResult = inputSchema.safeParse(input);
|
|
if (!validationResult.success) {
|
|
throw new Error('Invalid input data');
|
|
}
|
|
const { data } = validationResult.data;
|
|
|
|
/** @type {EndpointTokenConfig} */
|
|
const tokenConfig = {};
|
|
|
|
for (const model of data) {
|
|
const modelKey = model.id;
|
|
if (modelKey === 'openrouter/auto') {
|
|
model.pricing = {
|
|
prompt: '0.00001',
|
|
completion: '0.00003',
|
|
};
|
|
}
|
|
const prompt = parseFloat(model.pricing.prompt) * 1000000;
|
|
const completion = parseFloat(model.pricing.completion) * 1000000;
|
|
|
|
tokenConfig[modelKey] = {
|
|
prompt,
|
|
completion,
|
|
context: model.context_length,
|
|
};
|
|
}
|
|
|
|
return tokenConfig;
|
|
}
|
|
|
|
const tiktokenModels = new Set([
|
|
'text-davinci-003',
|
|
'text-davinci-002',
|
|
'text-davinci-001',
|
|
'text-curie-001',
|
|
'text-babbage-001',
|
|
'text-ada-001',
|
|
'davinci',
|
|
'curie',
|
|
'babbage',
|
|
'ada',
|
|
'code-davinci-002',
|
|
'code-davinci-001',
|
|
'code-cushman-002',
|
|
'code-cushman-001',
|
|
'davinci-codex',
|
|
'cushman-codex',
|
|
'text-davinci-edit-001',
|
|
'code-davinci-edit-001',
|
|
'text-embedding-ada-002',
|
|
'text-similarity-davinci-001',
|
|
'text-similarity-curie-001',
|
|
'text-similarity-babbage-001',
|
|
'text-similarity-ada-001',
|
|
'text-search-davinci-doc-001',
|
|
'text-search-curie-doc-001',
|
|
'text-search-babbage-doc-001',
|
|
'text-search-ada-doc-001',
|
|
'code-search-babbage-code-001',
|
|
'code-search-ada-code-001',
|
|
'gpt2',
|
|
'gpt-4',
|
|
'gpt-4-0314',
|
|
'gpt-4-32k',
|
|
'gpt-4-32k-0314',
|
|
'gpt-3.5-turbo',
|
|
'gpt-3.5-turbo-0301',
|
|
]);
|
|
|
|
module.exports = {
|
|
tiktokenModels,
|
|
maxTokensMap,
|
|
inputSchema,
|
|
modelSchema,
|
|
getModelMaxTokens,
|
|
matchModelName,
|
|
processModelData,
|
|
};
|