LibreChat/api/models/tx.spec.js
Danny Avila d6a17784dc
🔗 feat: Agent Chain (Mixture-of-Agents) (#6374)
* wip: first pass, dropdown for selecting sequential agents

* refactor: Improve agent selection logic and enhance performance in SequentialAgents component

* wip: seq. agents working ideas

* wip: sequential agents style change

* refactor: move agent form options/submission outside of AgentConfig

* refactor: prevent repeating code

* refactor: simplify current agent display in SequentialAgents component

* feat: persist  form value handling in AgentSelect component for agent_ids

* feat: first pass, sequential agnets agent update

* feat: enhance message display with agent updates and empty text handling

* chore: update Icon component to use EModelEndpoint for agent endpoints

* feat: update content type checks in BaseClient to use constants for better readability

* feat: adjust max context tokens calculation to use 90% of the model's max tokens

* feat: first pass, agent run message pruning

* chore: increase max listeners for abort controller to prevent memory leaks

* feat: enhance runAgent function to include current index count map for improved token tracking

* chore: update @librechat/agents dependency to version 2.2.5

* feat: update icons and style of SequentialAgents component for improved UI consistency

* feat: add AdvancedButton and AdvancedPanel components for enhanced agent settings navigation, update styling for agent form

* chore: adjust minimum height of AdvancedPanel component for better layout consistency

* chore: update @librechat/agents dependency to version 2.2.6

* feat: enhance message formatting by incorporating tool set into agent message processing, in order to allow better mix/matching of agents (as tool calls for tools not found in set will be stringified)

* refactor: reorder components in AgentConfig for improved readability and maintainability

* refactor: enhance layout of AgentUpdate component for improved visual structure

* feat: add DeepSeek provider to Bedrock settings and schemas

* feat: enhance link styling in mobile.css for better visibility and accessibility

* fix: update banner model import in update banner script; export Banner model

* refactor: `duplicateAgentHandler` to include tool_resources only for OCR context files

* feat: add 'qwen-vl' to visionModels for enhanced model support

* fix: change image format from JPEG to PNG in DALLE3 response

* feat: reorganize Advanced components and add localizations

* refactor: simplify JSX structure in AgentChain component to defer container styling to parent

* feat: add FormInput component for reusable input handling

* feat: make agent recursion limit configurable from builder

* feat: add support for agent capabilities chain in AdvancedPanel and update data-provider version

* feat: add maxRecursionLimit configuration for agents and update related documentation

* fix: update CONFIG_VERSION to 1.2.3 in data provider configuration

* feat: replace recursion limit input with MaxAgentSteps component and enhance input handling

* feat: enhance AgentChain component with hover card for additional information and update related labels

* fix: pass request and response objects to `createActionTool` when using assistant actions to prevent auth error

* feat: update AgentChain component layout to include agent count display

* feat: increase default max listeners and implement capability check function for agent chain

* fix: update link styles in mobile.css for better visibility in dark mode

* chore: temp. remove agents package while bumping shared packages

* chore: update @langchain/google-genai package to version 0.1.11

* chore: update @langchain/google-vertexai package to version 0.2.2

* chore: add @librechat/agents package at version 2.2.8

* feat: add deepseek.r1 model with token rate and context values for bedrock
2025-03-17 16:43:44 -04:00

511 lines
21 KiB
JavaScript

const { EModelEndpoint } = require('librechat-data-provider');
const {
defaultRate,
tokenValues,
getValueKey,
getMultiplier,
cacheTokenValues,
getCacheMultiplier,
} = require('./tx');
describe('getValueKey', () => {
it('should return "16k" for model name containing "gpt-3.5-turbo-16k"', () => {
expect(getValueKey('gpt-3.5-turbo-16k-some-other-info')).toBe('16k');
});
it('should return "4k" for model name containing "gpt-3.5"', () => {
expect(getValueKey('gpt-3.5-some-other-info')).toBe('4k');
});
it('should return "32k" for model name containing "gpt-4-32k"', () => {
expect(getValueKey('gpt-4-32k-some-other-info')).toBe('32k');
});
it('should return "8k" for model name containing "gpt-4"', () => {
expect(getValueKey('gpt-4-some-other-info')).toBe('8k');
});
it('should return undefined for model names that do not match any known patterns', () => {
expect(getValueKey('gpt-5-some-other-info')).toBeUndefined();
});
it('should return "gpt-3.5-turbo-1106" for model name containing "gpt-3.5-turbo-1106"', () => {
expect(getValueKey('gpt-3.5-turbo-1106-some-other-info')).toBe('gpt-3.5-turbo-1106');
expect(getValueKey('openai/gpt-3.5-turbo-1106')).toBe('gpt-3.5-turbo-1106');
expect(getValueKey('gpt-3.5-turbo-1106/openai')).toBe('gpt-3.5-turbo-1106');
});
it('should return "gpt-4-1106" for model name containing "gpt-4-1106"', () => {
expect(getValueKey('gpt-4-1106-some-other-info')).toBe('gpt-4-1106');
expect(getValueKey('gpt-4-1106-vision-preview')).toBe('gpt-4-1106');
expect(getValueKey('gpt-4-1106-preview')).toBe('gpt-4-1106');
expect(getValueKey('openai/gpt-4-1106')).toBe('gpt-4-1106');
expect(getValueKey('gpt-4-1106/openai/')).toBe('gpt-4-1106');
});
it('should return "gpt-4-1106" for model type of "gpt-4-1106"', () => {
expect(getValueKey('gpt-4-vision-preview')).toBe('gpt-4-1106');
expect(getValueKey('openai/gpt-4-1106')).toBe('gpt-4-1106');
expect(getValueKey('gpt-4-turbo')).toBe('gpt-4-1106');
expect(getValueKey('gpt-4-0125')).toBe('gpt-4-1106');
});
it('should return "gpt-4.5" for model type of "gpt-4.5"', () => {
expect(getValueKey('gpt-4.5-preview')).toBe('gpt-4.5');
expect(getValueKey('gpt-4.5-2024-08-06')).toBe('gpt-4.5');
expect(getValueKey('gpt-4.5-2024-08-06-0718')).toBe('gpt-4.5');
expect(getValueKey('openai/gpt-4.5')).toBe('gpt-4.5');
expect(getValueKey('openai/gpt-4.5-2024-08-06')).toBe('gpt-4.5');
expect(getValueKey('gpt-4.5-turbo')).toBe('gpt-4.5');
expect(getValueKey('gpt-4.5-0125')).toBe('gpt-4.5');
});
it('should return "gpt-4o" for model type of "gpt-4o"', () => {
expect(getValueKey('gpt-4o-2024-08-06')).toBe('gpt-4o');
expect(getValueKey('gpt-4o-2024-08-06-0718')).toBe('gpt-4o');
expect(getValueKey('openai/gpt-4o')).toBe('gpt-4o');
expect(getValueKey('openai/gpt-4o-2024-08-06')).toBe('gpt-4o');
expect(getValueKey('gpt-4o-turbo')).toBe('gpt-4o');
expect(getValueKey('gpt-4o-0125')).toBe('gpt-4o');
});
it('should return "gpt-4o-mini" for model type of "gpt-4o-mini"', () => {
expect(getValueKey('gpt-4o-mini-2024-07-18')).toBe('gpt-4o-mini');
expect(getValueKey('openai/gpt-4o-mini')).toBe('gpt-4o-mini');
expect(getValueKey('gpt-4o-mini-0718')).toBe('gpt-4o-mini');
expect(getValueKey('gpt-4o-2024-08-06-0718')).not.toBe('gpt-4o-mini');
});
it('should return "gpt-4o-2024-05-13" for model type of "gpt-4o-2024-05-13"', () => {
expect(getValueKey('gpt-4o-2024-05-13')).toBe('gpt-4o-2024-05-13');
expect(getValueKey('openai/gpt-4o-2024-05-13')).toBe('gpt-4o-2024-05-13');
expect(getValueKey('gpt-4o-2024-05-13-0718')).toBe('gpt-4o-2024-05-13');
expect(getValueKey('gpt-4o-2024-05-13-0718')).not.toBe('gpt-4o');
});
it('should return "gpt-4o" for model type of "chatgpt-4o"', () => {
expect(getValueKey('chatgpt-4o-latest')).toBe('gpt-4o');
expect(getValueKey('openai/chatgpt-4o-latest')).toBe('gpt-4o');
expect(getValueKey('chatgpt-4o-latest-0916')).toBe('gpt-4o');
expect(getValueKey('chatgpt-4o-latest-0718')).toBe('gpt-4o');
});
it('should return "claude-3-7-sonnet" for model type of "claude-3-7-sonnet-"', () => {
expect(getValueKey('claude-3-7-sonnet-20240620')).toBe('claude-3-7-sonnet');
expect(getValueKey('anthropic/claude-3-7-sonnet')).toBe('claude-3-7-sonnet');
expect(getValueKey('claude-3-7-sonnet-turbo')).toBe('claude-3-7-sonnet');
expect(getValueKey('claude-3-7-sonnet-0125')).toBe('claude-3-7-sonnet');
});
it('should return "claude-3.7-sonnet" for model type of "claude-3.7-sonnet-"', () => {
expect(getValueKey('claude-3.7-sonnet-20240620')).toBe('claude-3.7-sonnet');
expect(getValueKey('anthropic/claude-3.7-sonnet')).toBe('claude-3.7-sonnet');
expect(getValueKey('claude-3.7-sonnet-turbo')).toBe('claude-3.7-sonnet');
expect(getValueKey('claude-3.7-sonnet-0125')).toBe('claude-3.7-sonnet');
});
it('should return "claude-3-5-sonnet" for model type of "claude-3-5-sonnet-"', () => {
expect(getValueKey('claude-3-5-sonnet-20240620')).toBe('claude-3-5-sonnet');
expect(getValueKey('anthropic/claude-3-5-sonnet')).toBe('claude-3-5-sonnet');
expect(getValueKey('claude-3-5-sonnet-turbo')).toBe('claude-3-5-sonnet');
expect(getValueKey('claude-3-5-sonnet-0125')).toBe('claude-3-5-sonnet');
});
it('should return "claude-3.5-sonnet" for model type of "claude-3.5-sonnet-"', () => {
expect(getValueKey('claude-3.5-sonnet-20240620')).toBe('claude-3.5-sonnet');
expect(getValueKey('anthropic/claude-3.5-sonnet')).toBe('claude-3.5-sonnet');
expect(getValueKey('claude-3.5-sonnet-turbo')).toBe('claude-3.5-sonnet');
expect(getValueKey('claude-3.5-sonnet-0125')).toBe('claude-3.5-sonnet');
});
it('should return "claude-3-5-haiku" for model type of "claude-3-5-haiku-"', () => {
expect(getValueKey('claude-3-5-haiku-20240620')).toBe('claude-3-5-haiku');
expect(getValueKey('anthropic/claude-3-5-haiku')).toBe('claude-3-5-haiku');
expect(getValueKey('claude-3-5-haiku-turbo')).toBe('claude-3-5-haiku');
expect(getValueKey('claude-3-5-haiku-0125')).toBe('claude-3-5-haiku');
});
it('should return "claude-3.5-haiku" for model type of "claude-3.5-haiku-"', () => {
expect(getValueKey('claude-3.5-haiku-20240620')).toBe('claude-3.5-haiku');
expect(getValueKey('anthropic/claude-3.5-haiku')).toBe('claude-3.5-haiku');
expect(getValueKey('claude-3.5-haiku-turbo')).toBe('claude-3.5-haiku');
expect(getValueKey('claude-3.5-haiku-0125')).toBe('claude-3.5-haiku');
});
});
describe('getMultiplier', () => {
it('should return the correct multiplier for a given valueKey and tokenType', () => {
expect(getMultiplier({ valueKey: '8k', tokenType: 'prompt' })).toBe(tokenValues['8k'].prompt);
expect(getMultiplier({ valueKey: '8k', tokenType: 'completion' })).toBe(
tokenValues['8k'].completion,
);
});
it('should return defaultRate if tokenType is provided but not found in tokenValues', () => {
expect(getMultiplier({ valueKey: '8k', tokenType: 'unknownType' })).toBe(defaultRate);
});
it('should derive the valueKey from the model if not provided', () => {
expect(getMultiplier({ tokenType: 'prompt', model: 'gpt-4-some-other-info' })).toBe(
tokenValues['8k'].prompt,
);
});
it('should return 1 if only model or tokenType is missing', () => {
expect(getMultiplier({ tokenType: 'prompt' })).toBe(1);
expect(getMultiplier({ model: 'gpt-4-some-other-info' })).toBe(1);
});
it('should return the correct multiplier for gpt-3.5-turbo-1106', () => {
expect(getMultiplier({ valueKey: 'gpt-3.5-turbo-1106', tokenType: 'prompt' })).toBe(
tokenValues['gpt-3.5-turbo-1106'].prompt,
);
expect(getMultiplier({ valueKey: 'gpt-3.5-turbo-1106', tokenType: 'completion' })).toBe(
tokenValues['gpt-3.5-turbo-1106'].completion,
);
});
it('should return the correct multiplier for gpt-4-1106', () => {
expect(getMultiplier({ valueKey: 'gpt-4-1106', tokenType: 'prompt' })).toBe(
tokenValues['gpt-4-1106'].prompt,
);
expect(getMultiplier({ valueKey: 'gpt-4-1106', tokenType: 'completion' })).toBe(
tokenValues['gpt-4-1106'].completion,
);
});
it('should return the correct multiplier for gpt-4o', () => {
const valueKey = getValueKey('gpt-4o-2024-08-06');
expect(getMultiplier({ valueKey, tokenType: 'prompt' })).toBe(tokenValues['gpt-4o'].prompt);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).toBe(
tokenValues['gpt-4o'].completion,
);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).not.toBe(
tokenValues['gpt-4-1106'].completion,
);
});
it('should return the correct multiplier for gpt-4o-mini', () => {
const valueKey = getValueKey('gpt-4o-mini-2024-07-18');
expect(getMultiplier({ valueKey, tokenType: 'prompt' })).toBe(
tokenValues['gpt-4o-mini'].prompt,
);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).toBe(
tokenValues['gpt-4o-mini'].completion,
);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).not.toBe(
tokenValues['gpt-4-1106'].completion,
);
});
it('should return the correct multiplier for chatgpt-4o-latest', () => {
const valueKey = getValueKey('chatgpt-4o-latest');
expect(getMultiplier({ valueKey, tokenType: 'prompt' })).toBe(tokenValues['gpt-4o'].prompt);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).toBe(
tokenValues['gpt-4o'].completion,
);
expect(getMultiplier({ valueKey, tokenType: 'completion' })).not.toBe(
tokenValues['gpt-4o-mini'].completion,
);
});
it('should derive the valueKey from the model if not provided for new models', () => {
expect(
getMultiplier({ tokenType: 'prompt', model: 'gpt-3.5-turbo-1106-some-other-info' }),
).toBe(tokenValues['gpt-3.5-turbo-1106'].prompt);
expect(getMultiplier({ tokenType: 'completion', model: 'gpt-4-1106-vision-preview' })).toBe(
tokenValues['gpt-4-1106'].completion,
);
expect(getMultiplier({ tokenType: 'completion', model: 'gpt-4-0125-preview' })).toBe(
tokenValues['gpt-4-1106'].completion,
);
expect(getMultiplier({ tokenType: 'completion', model: 'gpt-4-turbo-vision-preview' })).toBe(
tokenValues['gpt-4-1106'].completion,
);
expect(getMultiplier({ tokenType: 'completion', model: 'gpt-3.5-turbo-0125' })).toBe(
tokenValues['gpt-3.5-turbo-0125'].completion,
);
});
it('should return defaultRate if derived valueKey does not match any known patterns', () => {
expect(getMultiplier({ tokenType: 'prompt', model: 'gpt-5-some-other-info' })).toBe(
defaultRate,
);
});
});
describe('AWS Bedrock Model Tests', () => {
const awsModels = [
'anthropic.claude-3-5-haiku-20241022-v1:0',
'anthropic.claude-3-haiku-20240307-v1:0',
'anthropic.claude-3-sonnet-20240229-v1:0',
'anthropic.claude-3-opus-20240229-v1:0',
'anthropic.claude-3-5-sonnet-20240620-v1:0',
'anthropic.claude-v2:1',
'anthropic.claude-instant-v1',
'meta.llama2-13b-chat-v1',
'meta.llama2-70b-chat-v1',
'meta.llama3-8b-instruct-v1:0',
'meta.llama3-70b-instruct-v1:0',
'meta.llama3-1-8b-instruct-v1:0',
'meta.llama3-1-70b-instruct-v1:0',
'meta.llama3-1-405b-instruct-v1:0',
'mistral.mistral-7b-instruct-v0:2',
'mistral.mistral-small-2402-v1:0',
'mistral.mixtral-8x7b-instruct-v0:1',
'mistral.mistral-large-2402-v1:0',
'mistral.mistral-large-2407-v1:0',
'cohere.command-text-v14',
'cohere.command-light-text-v14',
'cohere.command-r-v1:0',
'cohere.command-r-plus-v1:0',
'ai21.j2-mid-v1',
'ai21.j2-ultra-v1',
'amazon.titan-text-lite-v1',
'amazon.titan-text-express-v1',
'amazon.nova-micro-v1:0',
'amazon.nova-lite-v1:0',
'amazon.nova-pro-v1:0',
];
it('should return the correct prompt multipliers for all models', () => {
const results = awsModels.map((model) => {
const valueKey = getValueKey(model, EModelEndpoint.bedrock);
const multiplier = getMultiplier({ valueKey, tokenType: 'prompt' });
return tokenValues[valueKey].prompt && multiplier === tokenValues[valueKey].prompt;
});
expect(results.every(Boolean)).toBe(true);
});
it('should return the correct completion multipliers for all models', () => {
const results = awsModels.map((model) => {
const valueKey = getValueKey(model, EModelEndpoint.bedrock);
const multiplier = getMultiplier({ valueKey, tokenType: 'completion' });
return tokenValues[valueKey].completion && multiplier === tokenValues[valueKey].completion;
});
expect(results.every(Boolean)).toBe(true);
});
});
describe('Deepseek Model Tests', () => {
const deepseekModels = ['deepseek-chat', 'deepseek-coder', 'deepseek-reasoner', 'deepseek.r1'];
it('should return the correct prompt multipliers for all models', () => {
const results = deepseekModels.map((model) => {
const valueKey = getValueKey(model);
const multiplier = getMultiplier({ valueKey, tokenType: 'prompt' });
return tokenValues[valueKey].prompt && multiplier === tokenValues[valueKey].prompt;
});
expect(results.every(Boolean)).toBe(true);
});
it('should return the correct completion multipliers for all models', () => {
const results = deepseekModels.map((model) => {
const valueKey = getValueKey(model);
const multiplier = getMultiplier({ valueKey, tokenType: 'completion' });
return tokenValues[valueKey].completion && multiplier === tokenValues[valueKey].completion;
});
expect(results.every(Boolean)).toBe(true);
});
it('should return the correct prompt multipliers for reasoning model', () => {
const model = 'deepseek-reasoner';
const valueKey = getValueKey(model);
expect(valueKey).toBe(model);
const multiplier = getMultiplier({ valueKey, tokenType: 'prompt' });
const result = tokenValues[valueKey].prompt && multiplier === tokenValues[valueKey].prompt;
expect(result).toBe(true);
});
});
describe('getCacheMultiplier', () => {
it('should return the correct cache multiplier for a given valueKey and cacheType', () => {
expect(getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'write' })).toBe(
cacheTokenValues['claude-3-5-sonnet'].write,
);
expect(getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'read' })).toBe(
cacheTokenValues['claude-3-5-sonnet'].read,
);
expect(getCacheMultiplier({ valueKey: 'claude-3-5-haiku', cacheType: 'write' })).toBe(
cacheTokenValues['claude-3-5-haiku'].write,
);
expect(getCacheMultiplier({ valueKey: 'claude-3-5-haiku', cacheType: 'read' })).toBe(
cacheTokenValues['claude-3-5-haiku'].read,
);
expect(getCacheMultiplier({ valueKey: 'claude-3-haiku', cacheType: 'write' })).toBe(
cacheTokenValues['claude-3-haiku'].write,
);
expect(getCacheMultiplier({ valueKey: 'claude-3-haiku', cacheType: 'read' })).toBe(
cacheTokenValues['claude-3-haiku'].read,
);
});
it('should return null if cacheType is provided but not found in cacheTokenValues', () => {
expect(
getCacheMultiplier({ valueKey: 'claude-3-5-sonnet', cacheType: 'unknownType' }),
).toBeNull();
});
it('should derive the valueKey from the model if not provided', () => {
expect(getCacheMultiplier({ cacheType: 'write', model: 'claude-3-5-sonnet-20240620' })).toBe(
3.75,
);
expect(getCacheMultiplier({ cacheType: 'read', model: 'claude-3-haiku-20240307' })).toBe(0.03);
});
it('should return null if only model or cacheType is missing', () => {
expect(getCacheMultiplier({ cacheType: 'write' })).toBeNull();
expect(getCacheMultiplier({ model: 'claude-3-5-sonnet' })).toBeNull();
});
it('should return null if derived valueKey does not match any known patterns', () => {
expect(getCacheMultiplier({ cacheType: 'write', model: 'gpt-4-some-other-info' })).toBeNull();
});
it('should handle endpointTokenConfig if provided', () => {
const endpointTokenConfig = {
'custom-model': {
write: 5,
read: 1,
},
};
expect(
getCacheMultiplier({ model: 'custom-model', cacheType: 'write', endpointTokenConfig }),
).toBe(5);
expect(
getCacheMultiplier({ model: 'custom-model', cacheType: 'read', endpointTokenConfig }),
).toBe(1);
});
it('should return null if model is not found in endpointTokenConfig', () => {
const endpointTokenConfig = {
'custom-model': {
write: 5,
read: 1,
},
};
expect(
getCacheMultiplier({ model: 'unknown-model', cacheType: 'write', endpointTokenConfig }),
).toBeNull();
});
it('should handle models with "bedrock/" prefix', () => {
expect(
getCacheMultiplier({
model: 'bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0',
cacheType: 'write',
}),
).toBe(3.75);
expect(
getCacheMultiplier({
model: 'bedrock/anthropic.claude-3-haiku-20240307-v1:0',
cacheType: 'read',
}),
).toBe(0.03);
});
});
describe('Google Model Tests', () => {
const googleModels = [
'gemini-2.0-flash-lite-preview-02-05',
'gemini-2.0-flash-001',
'gemini-2.0-flash-exp',
'gemini-2.0-pro-exp-02-05',
'gemini-1.5-flash-8b',
'gemini-1.5-flash-thinking',
'gemini-1.5-pro-latest',
'gemini-1.5-pro-preview-0409',
'gemini-pro-vision',
'gemini-1.0',
'gemini-pro',
];
it('should return the correct prompt and completion rates for all models', () => {
const results = googleModels.map((model) => {
const valueKey = getValueKey(model, EModelEndpoint.google);
const promptRate = getMultiplier({
model,
tokenType: 'prompt',
endpoint: EModelEndpoint.google,
});
const completionRate = getMultiplier({
model,
tokenType: 'completion',
endpoint: EModelEndpoint.google,
});
return { model, valueKey, promptRate, completionRate };
});
results.forEach(({ valueKey, promptRate, completionRate }) => {
expect(promptRate).toBe(tokenValues[valueKey].prompt);
expect(completionRate).toBe(tokenValues[valueKey].completion);
});
});
it('should map to the correct model keys', () => {
const expected = {
'gemini-2.0-flash-lite-preview-02-05': 'gemini-2.0-flash-lite',
'gemini-2.0-flash-001': 'gemini-2.0-flash',
'gemini-2.0-flash-exp': 'gemini-2.0-flash',
'gemini-2.0-pro-exp-02-05': 'gemini-2.0',
'gemini-1.5-flash-8b': 'gemini-1.5-flash-8b',
'gemini-1.5-flash-thinking': 'gemini-1.5-flash',
'gemini-1.5-pro-latest': 'gemini-1.5',
'gemini-1.5-pro-preview-0409': 'gemini-1.5',
'gemini-pro-vision': 'gemini-pro-vision',
'gemini-1.0': 'gemini',
'gemini-pro': 'gemini',
};
Object.entries(expected).forEach(([model, expectedKey]) => {
const valueKey = getValueKey(model, EModelEndpoint.google);
expect(valueKey).toBe(expectedKey);
});
});
it('should handle model names with different formats', () => {
const testCases = [
{ input: 'google/gemini-pro', expected: 'gemini' },
{ input: 'gemini-pro/google', expected: 'gemini' },
{ input: 'google/gemini-2.0-flash-lite', expected: 'gemini-2.0-flash-lite' },
];
testCases.forEach(({ input, expected }) => {
const valueKey = getValueKey(input, EModelEndpoint.google);
expect(valueKey).toBe(expected);
expect(
getMultiplier({ model: input, tokenType: 'prompt', endpoint: EModelEndpoint.google }),
).toBe(tokenValues[expected].prompt);
expect(
getMultiplier({ model: input, tokenType: 'completion', endpoint: EModelEndpoint.google }),
).toBe(tokenValues[expected].completion);
});
});
});
describe('Grok Model Tests - Pricing', () => {
describe('getMultiplier', () => {
test('should return correct prompt and completion rates for Grok vision models', () => {
const models = ['grok-2-vision-1212', 'grok-2-vision', 'grok-2-vision-latest'];
models.forEach((model) => {
expect(getMultiplier({ model, tokenType: 'prompt' })).toBe(2.0);
expect(getMultiplier({ model, tokenType: 'completion' })).toBe(10.0);
});
});
test('should return correct prompt and completion rates for Grok text models', () => {
const models = ['grok-2-1212', 'grok-2', 'grok-2-latest'];
models.forEach((model) => {
expect(getMultiplier({ model, tokenType: 'prompt' })).toBe(2.0);
expect(getMultiplier({ model, tokenType: 'completion' })).toBe(10.0);
});
});
test('should return correct prompt and completion rates for Grok beta models', () => {
expect(getMultiplier({ model: 'grok-vision-beta', tokenType: 'prompt' })).toBe(5.0);
expect(getMultiplier({ model: 'grok-vision-beta', tokenType: 'completion' })).toBe(15.0);
expect(getMultiplier({ model: 'grok-beta', tokenType: 'prompt' })).toBe(5.0);
expect(getMultiplier({ model: 'grok-beta', tokenType: 'completion' })).toBe(15.0);
});
});
});