LibreChat/api/app/clients/OpenAIClient.js
Danny Avila 5cd5c3bef8
🅰️ feat: Azure OpenAI Assistants API Support (#1992)
* chore: rename dir from `assistant` to plural

* feat: `assistants` field for azure config, spread options in AppService

* refactor: rename constructAzureURL param for azure as `azureOptions`

* chore: bump openai and bun

* chore(loadDefaultModels): change naming of assistant -> assistants

* feat: load azure settings with currect baseURL for assistants' initializeClient

* refactor: add `assistants` flags to groups and model configs, add mapGroupToAzureConfig

* feat(loadConfigEndpoints): initialize assistants endpoint if azure flag `assistants` is enabled

* feat(AppService): determine assistant models on startup, throw Error if none

* refactor(useDeleteAssistantMutation): send model along with assistant id for delete mutations

* feat: support listing and deleting assistants with azure

* feat: add model query to assistant avatar upload

* feat: add azure support for retrieveRun method

* refactor: update OpenAIClient initialization

* chore: update README

* fix(ci): tests passing

* refactor(uploadOpenAIFile): improve logging and use more efficient REST API method

* refactor(useFileHandling): add model to metadata to target Azure region compatible with current model

* chore(files): add azure naming pattern for valid file id recognition

* fix(assistants): initialize openai with first available assistant model if none provided

* refactor(uploadOpenAIFile): add content type for azure, initialize formdata before azure options

* refactor(sleep): move sleep function out of Runs and into `~/server/utils`

* fix(azureOpenAI/assistants): make sure to only overwrite models with assistant models if `assistants` flag is enabled

* refactor(uploadOpenAIFile): revert to old method

* chore(uploadOpenAIFile): use enum for file purpose

* docs: azureOpenAI update guide with more info, examples

* feat: enable/disable assistant capabilities and specify retrieval models

* refactor: optional chain conditional statement in loadConfigModels.js

* docs: add assistants examples

* chore: update librechat.example.yaml

* docs(azure): update note of file upload behavior in Azure OpenAI Assistants

* chore: update docs and add descriptive message about assistant errors

* fix: prevent message submission with invalid assistant or if files loading

* style: update Landing icon & text when assistant is not selected

* chore: bump librechat-data-provider to 0.4.8

* fix(assistants/azure): assign req.body.model for proper azure init to abort runs
2024-03-14 17:21:42 -04:00

1243 lines
39 KiB
JavaScript

const OpenAI = require('openai');
const { HttpsProxyAgent } = require('https-proxy-agent');
const {
ImageDetail,
EModelEndpoint,
resolveHeaders,
ImageDetailCost,
getResponseSender,
validateVisionModel,
mapModelToAzureConfig,
} = require('librechat-data-provider');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const {
extractBaseURL,
constructAzureURL,
getModelMaxTokens,
genAzureChatCompletion,
} = require('~/utils');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const { truncateText, formatMessage, CUT_OFF_PROMPT } = require('./prompts');
const { handleOpenAIErrors } = require('./tools/util');
const spendTokens = require('~/models/spendTokens');
const { createLLM, RunManager } = require('./llm');
const ChatGPTClient = require('./ChatGPTClient');
const { isEnabled } = require('~/server/utils');
const { getFiles } = require('~/models/File');
const { summaryBuffer } = require('./memory');
const { runTitleChain } = require('./chains');
const { tokenSplit } = require('./document');
const BaseClient = require('./BaseClient');
const { logger } = require('~/config');
// Cache to store Tiktoken instances
const tokenizersCache = {};
// Counter for keeping track of the number of tokenizer calls
let tokenizerCallsCount = 0;
class OpenAIClient extends BaseClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.ChatGPTClient = new ChatGPTClient();
this.buildPrompt = this.ChatGPTClient.buildPrompt.bind(this);
this.getCompletion = this.ChatGPTClient.getCompletion.bind(this);
this.contextStrategy = options.contextStrategy
? options.contextStrategy.toLowerCase()
: 'discard';
this.shouldSummarize = this.contextStrategy === 'summarize';
/** @type {AzureOptions} */
this.azure = options.azure || false;
this.setOptions(options);
}
// TODO: PluginsClient calls this 3x, unneeded
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
if (this.options.openaiApiKey) {
this.apiKey = this.options.openaiApiKey;
}
const modelOptions = this.options.modelOptions || {};
if (!this.modelOptions) {
this.modelOptions = {
...modelOptions,
model: modelOptions.model || 'gpt-3.5-turbo',
temperature:
typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
presence_penalty:
typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
stop: modelOptions.stop,
};
} else {
// Update the modelOptions if it already exists
this.modelOptions = {
...this.modelOptions,
...modelOptions,
};
}
this.defaultVisionModel = this.options.visionModel ?? 'gpt-4-vision-preview';
this.checkVisionRequest(this.options.attachments);
const { OPENROUTER_API_KEY, OPENAI_FORCE_PROMPT } = process.env ?? {};
if (OPENROUTER_API_KEY && !this.azure) {
this.apiKey = OPENROUTER_API_KEY;
this.useOpenRouter = true;
}
const { reverseProxyUrl: reverseProxy } = this.options;
if (
!this.useOpenRouter &&
reverseProxy &&
reverseProxy.includes('https://openrouter.ai/api/v1')
) {
this.useOpenRouter = true;
}
this.FORCE_PROMPT =
isEnabled(OPENAI_FORCE_PROMPT) ||
(reverseProxy && reverseProxy.includes('completions') && !reverseProxy.includes('chat'));
if (typeof this.options.forcePrompt === 'boolean') {
this.FORCE_PROMPT = this.options.forcePrompt;
}
if (this.azure && process.env.AZURE_OPENAI_DEFAULT_MODEL) {
this.azureEndpoint = genAzureChatCompletion(this.azure, this.modelOptions.model, this);
this.modelOptions.model = process.env.AZURE_OPENAI_DEFAULT_MODEL;
} else if (this.azure) {
this.azureEndpoint = genAzureChatCompletion(this.azure, this.modelOptions.model, this);
}
const { model } = this.modelOptions;
this.isChatCompletion = this.useOpenRouter || !!reverseProxy || model.includes('gpt');
this.isChatGptModel = this.isChatCompletion;
if (
model.includes('text-davinci') ||
model.includes('gpt-3.5-turbo-instruct') ||
this.FORCE_PROMPT
) {
this.isChatCompletion = false;
this.isChatGptModel = false;
}
const { isChatGptModel } = this;
this.isUnofficialChatGptModel =
model.startsWith('text-chat') || model.startsWith('text-davinci-002-render');
this.maxContextTokens =
getModelMaxTokens(
model,
this.options.endpointType ?? this.options.endpoint,
this.options.endpointTokenConfig,
) ?? 4095; // 1 less than maximum
if (this.shouldSummarize) {
this.maxContextTokens = Math.floor(this.maxContextTokens / 2);
}
if (this.options.debug) {
logger.debug('[OpenAIClient] maxContextTokens', this.maxContextTokens);
}
this.maxResponseTokens = this.modelOptions.max_tokens || 1024;
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
);
}
this.sender =
this.options.sender ??
getResponseSender({
model: this.modelOptions.model,
endpoint: this.options.endpoint,
endpointType: this.options.endpointType,
chatGptLabel: this.options.chatGptLabel,
modelDisplayLabel: this.options.modelDisplayLabel,
});
this.userLabel = this.options.userLabel || 'User';
this.chatGptLabel = this.options.chatGptLabel || 'Assistant';
this.setupTokens();
if (!this.modelOptions.stop && !this.isVisionModel) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
this.modelOptions.stop = stopTokens;
}
if (reverseProxy) {
this.completionsUrl = reverseProxy;
this.langchainProxy = extractBaseURL(reverseProxy);
} else if (isChatGptModel) {
this.completionsUrl = 'https://api.openai.com/v1/chat/completions';
} else {
this.completionsUrl = 'https://api.openai.com/v1/completions';
}
if (this.azureEndpoint) {
this.completionsUrl = this.azureEndpoint;
}
if (this.azureEndpoint && this.options.debug) {
logger.debug('Using Azure endpoint');
}
if (this.useOpenRouter) {
this.completionsUrl = 'https://openrouter.ai/api/v1/chat/completions';
}
return this;
}
/**
*
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
* - Sets `this.modelOptions.model` to `gpt-4-vision-preview` if the request is a vision request.
* - Sets `this.isVisionModel` to `true` if vision request.
* - Deletes `this.modelOptions.stop` if vision request.
* @param {Array<Promise<MongoFile[]> | MongoFile[]> | Record<string, MongoFile[]>} attachments
*/
checkVisionRequest(attachments) {
const availableModels = this.options.modelsConfig?.[this.options.endpoint];
this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
const visionModelAvailable = availableModels?.includes(this.defaultVisionModel);
if (attachments && visionModelAvailable && !this.isVisionModel) {
this.modelOptions.model = this.defaultVisionModel;
this.isVisionModel = true;
}
if (this.isVisionModel) {
delete this.modelOptions.stop;
}
}
setupTokens() {
if (this.isChatCompletion) {
this.startToken = '||>';
this.endToken = '';
} else if (this.isUnofficialChatGptModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
} else {
this.startToken = '||>';
this.endToken = '';
}
}
// Selects an appropriate tokenizer based on the current configuration of the client instance.
// It takes into account factors such as whether it's a chat completion, an unofficial chat GPT model, etc.
selectTokenizer() {
let tokenizer;
this.encoding = 'text-davinci-003';
if (this.isChatCompletion) {
this.encoding = 'cl100k_base';
tokenizer = this.constructor.getTokenizer(this.encoding);
} else if (this.isUnofficialChatGptModel) {
const extendSpecialTokens = {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
};
tokenizer = this.constructor.getTokenizer(this.encoding, true, extendSpecialTokens);
} else {
try {
const { model } = this.modelOptions;
this.encoding = model.includes('instruct') ? 'text-davinci-003' : model;
tokenizer = this.constructor.getTokenizer(this.encoding, true);
} catch {
tokenizer = this.constructor.getTokenizer('text-davinci-003', true);
}
}
return tokenizer;
}
// Retrieves a tokenizer either from the cache or creates a new one if one doesn't exist in the cache.
// If a tokenizer is being created, it's also added to the cache.
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
let tokenizer;
if (tokenizersCache[encoding]) {
tokenizer = tokenizersCache[encoding];
} else {
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
}
return tokenizer;
}
// Frees all encoders in the cache and resets the count.
static freeAndResetAllEncoders() {
try {
Object.keys(tokenizersCache).forEach((key) => {
if (tokenizersCache[key]) {
tokenizersCache[key].free();
delete tokenizersCache[key];
}
});
// Reset count
tokenizerCallsCount = 1;
} catch (error) {
logger.error('[OpenAIClient] Free and reset encoders error', error);
}
}
// Checks if the cache of tokenizers has reached a certain size. If it has, it frees and resets all tokenizers.
resetTokenizersIfNecessary() {
if (tokenizerCallsCount >= 25) {
if (this.options.debug) {
logger.debug('[OpenAIClient] freeAndResetAllEncoders: reached 25 encodings, resetting...');
}
this.constructor.freeAndResetAllEncoders();
}
tokenizerCallsCount++;
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
this.resetTokenizersIfNecessary();
try {
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
} catch (error) {
this.constructor.freeAndResetAllEncoders();
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
}
}
/**
* Calculate the token cost for an image based on its dimensions and detail level.
*
* @param {Object} image - The image object.
* @param {number} image.width - The width of the image.
* @param {number} image.height - The height of the image.
* @param {'low'|'high'|string|undefined} [image.detail] - The detail level ('low', 'high', or other).
* @returns {number} The calculated token cost.
*/
calculateImageTokenCost({ width, height, detail }) {
if (detail === 'low') {
return ImageDetailCost.LOW;
}
// Calculate the number of 512px squares
const numSquares = Math.ceil(width / 512) * Math.ceil(height / 512);
// Default to high detail cost calculation
return numSquares * ImageDetailCost.HIGH + ImageDetailCost.ADDITIONAL;
}
getSaveOptions() {
return {
chatGptLabel: this.options.chatGptLabel,
promptPrefix: this.options.promptPrefix,
resendImages: this.options.resendImages,
imageDetail: this.options.imageDetail,
...this.modelOptions,
};
}
getBuildMessagesOptions(opts) {
return {
isChatCompletion: this.isChatCompletion,
promptPrefix: opts.promptPrefix,
abortController: opts.abortController,
};
}
/**
*
* @param {TMessage[]} _messages
* @returns {TMessage[]}
*/
async addPreviousAttachments(_messages) {
if (!this.options.resendImages) {
return _messages;
}
/**
*
* @param {TMessage} message
*/
const processMessage = async (message) => {
if (!this.message_file_map) {
/** @type {Record<string, MongoFile[]> */
this.message_file_map = {};
}
const fileIds = message.files.map((file) => file.file_id);
const files = await getFiles({
file_id: { $in: fileIds },
});
await this.addImageURLs(message, files);
this.message_file_map[message.messageId] = files;
return message;
};
const promises = [];
for (const message of _messages) {
if (!message.files) {
promises.push(message);
continue;
}
promises.push(processMessage(message));
}
const messages = await Promise.all(promises);
this.checkVisionRequest(this.message_file_map);
return messages;
}
/**
*
* Adds image URLs to the message object and returns the files
*
* @param {TMessage[]} messages
* @param {MongoFile[]} files
* @returns {Promise<MongoFile[]>}
*/
async addImageURLs(message, attachments) {
const { files, image_urls } = await encodeAndFormat(this.options.req, attachments);
message.image_urls = image_urls;
return files;
}
async buildMessages(
messages,
parentMessageId,
{ isChatCompletion = false, promptPrefix = null },
opts,
) {
let orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
summary: this.shouldSummarize,
});
if (!isChatCompletion) {
return await this.buildPrompt(orderedMessages, {
isChatGptModel: isChatCompletion,
promptPrefix,
});
}
let payload;
let instructions;
let tokenCountMap;
let promptTokens;
promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim();
if (promptPrefix) {
promptPrefix = `Instructions:\n${promptPrefix}`;
instructions = {
role: 'system',
name: 'instructions',
content: promptPrefix,
};
if (this.contextStrategy) {
instructions.tokenCount = this.getTokenCountForMessage(instructions);
}
}
if (this.options.attachments) {
const attachments = (await this.options.attachments).filter((file) =>
file.type.includes('image'),
);
if (this.message_file_map) {
this.message_file_map[orderedMessages[orderedMessages.length - 1].messageId] = attachments;
} else {
this.message_file_map = {
[orderedMessages[orderedMessages.length - 1].messageId]: attachments,
};
}
const files = await this.addImageURLs(
orderedMessages[orderedMessages.length - 1],
attachments,
);
this.options.attachments = files;
}
const formattedMessages = orderedMessages.map((message, i) => {
const formattedMessage = formatMessage({
message,
userName: this.options?.name,
assistantName: this.options?.chatGptLabel,
});
const needsTokenCount = this.contextStrategy && !orderedMessages[i].tokenCount;
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
}
/* If message has files, calculate image token cost */
if (this.message_file_map && this.message_file_map[message.messageId]) {
const attachments = this.message_file_map[message.messageId];
for (const file of attachments) {
orderedMessages[i].tokenCount += this.calculateImageTokenCost({
width: file.width,
height: file.height,
detail: this.options.imageDetail ?? ImageDetail.auto,
});
}
}
return formattedMessage;
});
// TODO: need to handle interleaving instructions better
if (this.contextStrategy) {
({ payload, tokenCountMap, promptTokens, messages } = await this.handleContextStrategy({
instructions,
orderedMessages,
formattedMessages,
}));
}
const result = {
prompt: payload,
promptTokens,
messages,
};
if (tokenCountMap) {
tokenCountMap.instructions = instructions?.tokenCount;
result.tokenCountMap = tokenCountMap;
}
if (promptTokens >= 0 && typeof opts?.getReqData === 'function') {
opts.getReqData({ promptTokens });
}
return result;
}
async sendCompletion(payload, opts = {}) {
let reply = '';
let result = null;
let streamResult = null;
this.modelOptions.user = this.user;
const invalidBaseUrl = this.completionsUrl && extractBaseURL(this.completionsUrl) === null;
const useOldMethod = !!(invalidBaseUrl || !this.isChatCompletion || typeof Bun !== 'undefined');
if (typeof opts.onProgress === 'function' && useOldMethod) {
await this.getCompletion(
payload,
(progressMessage) => {
if (progressMessage === '[DONE]') {
return;
}
if (progressMessage.choices) {
streamResult = progressMessage;
}
let token = null;
if (this.isChatCompletion) {
token =
progressMessage.choices?.[0]?.delta?.content ?? progressMessage.choices?.[0]?.text;
} else {
token = progressMessage.choices?.[0]?.text;
}
if (!token && this.useOpenRouter) {
token = progressMessage.choices?.[0]?.message?.content;
}
// first event's delta content is always undefined
if (!token) {
return;
}
if (token === this.endToken) {
return;
}
opts.onProgress(token);
reply += token;
},
opts.abortController || new AbortController(),
);
} else if (typeof opts.onProgress === 'function' || this.options.useChatCompletion) {
reply = await this.chatCompletion({
payload,
clientOptions: opts,
onProgress: opts.onProgress,
abortController: opts.abortController,
});
} else {
result = await this.getCompletion(
payload,
null,
opts.abortController || new AbortController(),
);
logger.debug('[OpenAIClient] sendCompletion: result', result);
if (this.isChatCompletion) {
reply = result.choices[0].message.content;
} else {
reply = result.choices[0].text.replace(this.endToken, '');
}
}
if (streamResult && typeof opts.addMetadata === 'function') {
const { finish_reason } = streamResult.choices[0];
opts.addMetadata({ finish_reason });
}
return (reply ?? '').trim();
}
initializeLLM({
model = 'gpt-3.5-turbo',
modelName,
temperature = 0.2,
presence_penalty = 0,
frequency_penalty = 0,
max_tokens,
streaming,
context,
tokenBuffer,
initialMessageCount,
conversationId,
}) {
const modelOptions = {
modelName: modelName ?? model,
temperature,
presence_penalty,
frequency_penalty,
user: this.user,
};
if (max_tokens) {
modelOptions.max_tokens = max_tokens;
}
const configOptions = {};
if (this.langchainProxy) {
configOptions.basePath = this.langchainProxy;
}
if (this.useOpenRouter) {
configOptions.basePath = 'https://openrouter.ai/api/v1';
configOptions.baseOptions = {
headers: {
'HTTP-Referer': 'https://librechat.ai',
'X-Title': 'LibreChat',
},
};
}
const { headers } = this.options;
if (headers && typeof headers === 'object' && !Array.isArray(headers)) {
configOptions.baseOptions = {
headers: resolveHeaders({
...headers,
...configOptions?.baseOptions?.headers,
}),
};
}
if (this.options.proxy) {
configOptions.httpAgent = new HttpsProxyAgent(this.options.proxy);
configOptions.httpsAgent = new HttpsProxyAgent(this.options.proxy);
}
const { req, res, debug } = this.options;
const runManager = new RunManager({ req, res, debug, abortController: this.abortController });
this.runManager = runManager;
const llm = createLLM({
modelOptions,
configOptions,
openAIApiKey: this.apiKey,
azure: this.azure,
streaming,
callbacks: runManager.createCallbacks({
context,
tokenBuffer,
conversationId: this.conversationId ?? conversationId,
initialMessageCount,
}),
});
return llm;
}
/**
* Generates a concise title for a conversation based on the user's input text and response.
* Uses either specified method or starts with the OpenAI `functions` method (using LangChain).
* If the `functions` method fails, it falls back to the `completion` method,
* which involves sending a chat completion request with specific instructions for title generation.
*
* @param {Object} params - The parameters for the conversation title generation.
* @param {string} params.text - The user's input.
* @param {string} [params.conversationId] - The current conversationId, if not already defined on client initialization.
* @param {string} [params.responseText=''] - The AI's immediate response to the user.
*
* @returns {Promise<string | 'New Chat'>} A promise that resolves to the generated conversation title.
* In case of failure, it will return the default title, "New Chat".
*/
async titleConvo({ text, conversationId, responseText = '' }) {
let title = 'New Chat';
const convo = `||>User:
"${truncateText(text)}"
||>Response:
"${JSON.stringify(truncateText(responseText))}"`;
const { OPENAI_TITLE_MODEL } = process.env ?? {};
const model = this.options.titleModel ?? OPENAI_TITLE_MODEL ?? 'gpt-3.5-turbo';
const modelOptions = {
// TODO: remove the gpt fallback and make it specific to endpoint
model,
temperature: 0.2,
presence_penalty: 0,
frequency_penalty: 0,
max_tokens: 16,
};
/** @type {TAzureConfig | undefined} */
const azureConfig = this.options?.req?.app?.locals?.[EModelEndpoint.azureOpenAI];
const resetTitleOptions =
(this.azure && azureConfig) ||
(azureConfig && this.options.endpoint === EModelEndpoint.azureOpenAI);
if (resetTitleOptions) {
const { modelGroupMap, groupMap } = azureConfig;
const {
azureOptions,
baseURL,
headers = {},
serverless,
} = mapModelToAzureConfig({
modelName: modelOptions.model,
modelGroupMap,
groupMap,
});
this.options.headers = resolveHeaders(headers);
this.options.reverseProxyUrl = baseURL ?? null;
this.langchainProxy = extractBaseURL(this.options.reverseProxyUrl);
this.apiKey = azureOptions.azureOpenAIApiKey;
const groupName = modelGroupMap[modelOptions.model].group;
this.options.addParams = azureConfig.groupMap[groupName].addParams;
this.options.dropParams = azureConfig.groupMap[groupName].dropParams;
this.options.forcePrompt = azureConfig.groupMap[groupName].forcePrompt;
this.azure = !serverless && azureOptions;
}
const titleChatCompletion = async () => {
modelOptions.model = model;
if (this.azure) {
modelOptions.model = process.env.AZURE_OPENAI_DEFAULT_MODEL ?? modelOptions.model;
this.azureEndpoint = genAzureChatCompletion(this.azure, modelOptions.model, this);
}
const instructionsPayload = [
{
role: 'system',
content: `Detect user language and write in the same language an extremely concise title for this conversation, which you must accurately detect.
Write in the detected language. Title in 5 Words or Less. No Punctuation or Quotation. Do not mention the language. All first letters of every word should be capitalized and write the title in User Language only.
${convo}
||>Title:`,
},
];
try {
title = (
await this.sendPayload(instructionsPayload, { modelOptions, useChatCompletion: true })
).replaceAll('"', '');
} catch (e) {
logger.error(
'[OpenAIClient] There was an issue generating the title with the completion method',
e,
);
}
};
if (this.options.titleMethod === 'completion') {
await titleChatCompletion();
logger.debug('[OpenAIClient] Convo Title: ' + title);
return title;
}
try {
this.abortController = new AbortController();
const llm = this.initializeLLM({
...modelOptions,
conversationId,
context: 'title',
tokenBuffer: 150,
});
title = await runTitleChain({ llm, text, convo, signal: this.abortController.signal });
} catch (e) {
if (e?.message?.toLowerCase()?.includes('abort')) {
logger.debug('[OpenAIClient] Aborted title generation');
return;
}
logger.error(
'[OpenAIClient] There was an issue generating title with LangChain, trying completion method...',
e,
);
await titleChatCompletion();
}
logger.debug('[OpenAIClient] Convo Title: ' + title);
return title;
}
async summarizeMessages({ messagesToRefine, remainingContextTokens }) {
logger.debug('[OpenAIClient] Summarizing messages...');
let context = messagesToRefine;
let prompt;
// TODO: remove the gpt fallback and make it specific to endpoint
const { OPENAI_SUMMARY_MODEL = 'gpt-3.5-turbo' } = process.env ?? {};
const model = this.options.summaryModel ?? OPENAI_SUMMARY_MODEL;
const maxContextTokens =
getModelMaxTokens(
model,
this.options.endpointType ?? this.options.endpoint,
this.options.endpointTokenConfig,
) ?? 4095; // 1 less than maximum
// 3 tokens for the assistant label, and 98 for the summarizer prompt (101)
let promptBuffer = 101;
/*
* Note: token counting here is to block summarization if it exceeds the spend; complete
* accuracy is not important. Actual spend will happen after successful summarization.
*/
const excessTokenCount = context.reduce(
(acc, message) => acc + message.tokenCount,
promptBuffer,
);
if (excessTokenCount > maxContextTokens) {
({ context } = await this.getMessagesWithinTokenLimit(context, maxContextTokens));
}
if (context.length === 0) {
logger.debug(
'[OpenAIClient] Summary context is empty, using latest message within token limit',
);
promptBuffer = 32;
const { text, ...latestMessage } = messagesToRefine[messagesToRefine.length - 1];
const splitText = await tokenSplit({
text,
chunkSize: Math.floor((maxContextTokens - promptBuffer) / 3),
});
const newText = `${splitText[0]}\n...[truncated]...\n${splitText[splitText.length - 1]}`;
prompt = CUT_OFF_PROMPT;
context = [
formatMessage({
message: {
...latestMessage,
text: newText,
},
userName: this.options?.name,
assistantName: this.options?.chatGptLabel,
}),
];
}
// TODO: We can accurately count the tokens here before handleChatModelStart
// by recreating the summary prompt (single message) to avoid LangChain handling
const initialPromptTokens = this.maxContextTokens - remainingContextTokens;
logger.debug('[OpenAIClient] initialPromptTokens', initialPromptTokens);
const llm = this.initializeLLM({
model,
temperature: 0.2,
context: 'summary',
tokenBuffer: initialPromptTokens,
});
try {
const summaryMessage = await summaryBuffer({
llm,
debug: this.options.debug,
prompt,
context,
formatOptions: {
userName: this.options?.name,
assistantName: this.options?.chatGptLabel ?? this.options?.modelLabel,
},
previous_summary: this.previous_summary?.summary,
signal: this.abortController.signal,
});
const summaryTokenCount = this.getTokenCountForMessage(summaryMessage);
if (this.options.debug) {
logger.debug('[OpenAIClient] summaryTokenCount', summaryTokenCount);
logger.debug(
`[OpenAIClient] Summarization complete: remainingContextTokens: ${remainingContextTokens}, after refining: ${
remainingContextTokens - summaryTokenCount
}`,
);
}
return { summaryMessage, summaryTokenCount };
} catch (e) {
if (e?.message?.toLowerCase()?.includes('abort')) {
logger.debug('[OpenAIClient] Aborted summarization');
const { run, runId } = this.runManager.getRunByConversationId(this.conversationId);
if (run && run.error) {
const { error } = run;
this.runManager.removeRun(runId);
throw new Error(error);
}
}
logger.error('[OpenAIClient] Error summarizing messages', e);
return {};
}
}
async recordTokenUsage({ promptTokens, completionTokens }) {
logger.debug('[OpenAIClient] recordTokenUsage:', { promptTokens, completionTokens });
await spendTokens(
{
user: this.user,
model: this.modelOptions.model,
context: 'message',
conversationId: this.conversationId,
endpointTokenConfig: this.options.endpointTokenConfig,
},
{ promptTokens, completionTokens },
);
}
getTokenCountForResponse(response) {
return this.getTokenCountForMessage({
role: 'assistant',
content: response.text,
});
}
async chatCompletion({ payload, onProgress, clientOptions, abortController = null }) {
let error = null;
const errorCallback = (err) => (error = err);
let intermediateReply = '';
try {
if (!abortController) {
abortController = new AbortController();
}
let modelOptions = { ...this.modelOptions };
if (typeof onProgress === 'function') {
modelOptions.stream = true;
}
if (this.isChatCompletion) {
modelOptions.messages = payload;
} else {
modelOptions.prompt = payload;
}
const baseURL = extractBaseURL(this.completionsUrl);
// let { messages: _msgsToLog, ...modelOptionsToLog } = modelOptions;
// if (modelOptionsToLog.messages) {
// _msgsToLog = modelOptionsToLog.messages.map((msg) => {
// let { content, ...rest } = msg;
// if (content)
// return { ...rest, content: truncateText(content) };
// });
// }
logger.debug('[OpenAIClient] chatCompletion', { baseURL, modelOptions });
const opts = {
baseURL,
};
if (this.useOpenRouter) {
opts.defaultHeaders = {
'HTTP-Referer': 'https://librechat.ai',
'X-Title': 'LibreChat',
};
}
if (this.options.headers) {
opts.defaultHeaders = { ...opts.defaultHeaders, ...this.options.headers };
}
if (this.options.proxy) {
opts.httpAgent = new HttpsProxyAgent(this.options.proxy);
}
if (this.isVisionModel) {
modelOptions.max_tokens = 4000;
}
/** @type {TAzureConfig | undefined} */
const azureConfig = this.options?.req?.app?.locals?.[EModelEndpoint.azureOpenAI];
if (
(this.azure && this.isVisionModel && azureConfig) ||
(azureConfig && this.isVisionModel && this.options.endpoint === EModelEndpoint.azureOpenAI)
) {
const { modelGroupMap, groupMap } = azureConfig;
const {
azureOptions,
baseURL,
headers = {},
serverless,
} = mapModelToAzureConfig({
modelName: modelOptions.model,
modelGroupMap,
groupMap,
});
opts.defaultHeaders = resolveHeaders(headers);
this.langchainProxy = extractBaseURL(baseURL);
this.apiKey = azureOptions.azureOpenAIApiKey;
const groupName = modelGroupMap[modelOptions.model].group;
this.options.addParams = azureConfig.groupMap[groupName].addParams;
this.options.dropParams = azureConfig.groupMap[groupName].dropParams;
// Note: `forcePrompt` not re-assigned as only chat models are vision models
this.azure = !serverless && azureOptions;
this.azureEndpoint =
!serverless && genAzureChatCompletion(this.azure, modelOptions.model, this);
}
if (this.azure || this.options.azure) {
// Azure does not accept `model` in the body, so we need to remove it.
delete modelOptions.model;
opts.baseURL = this.langchainProxy
? constructAzureURL({
baseURL: this.langchainProxy,
azureOptions: this.azure,
})
: this.azureEndpoint.split(/\/(chat|completion)/)[0];
opts.defaultQuery = { 'api-version': this.azure.azureOpenAIApiVersion };
opts.defaultHeaders = { ...opts.defaultHeaders, 'api-key': this.apiKey };
}
if (process.env.OPENAI_ORGANIZATION) {
opts.organization = process.env.OPENAI_ORGANIZATION;
}
let chatCompletion;
/** @type {OpenAI} */
const openai = new OpenAI({
apiKey: this.apiKey,
...opts,
});
/* hacky fixes for Mistral AI API:
- Re-orders system message to the top of the messages payload, as not allowed anywhere else
- If there is only one message and it's a system message, change the role to user
*/
if (opts.baseURL.includes('https://api.mistral.ai/v1') && modelOptions.messages) {
const { messages } = modelOptions;
const systemMessageIndex = messages.findIndex((msg) => msg.role === 'system');
if (systemMessageIndex > 0) {
const [systemMessage] = messages.splice(systemMessageIndex, 1);
messages.unshift(systemMessage);
}
modelOptions.messages = messages;
if (messages.length === 1 && messages[0].role === 'system') {
modelOptions.messages[0].role = 'user';
}
}
if (this.options.addParams && typeof this.options.addParams === 'object') {
modelOptions = {
...modelOptions,
...this.options.addParams,
};
logger.debug('[OpenAIClient] chatCompletion: added params', {
addParams: this.options.addParams,
modelOptions,
});
}
if (this.options.dropParams && Array.isArray(this.options.dropParams)) {
this.options.dropParams.forEach((param) => {
delete modelOptions[param];
});
logger.debug('[OpenAIClient] chatCompletion: dropped params', {
dropParams: this.options.dropParams,
modelOptions,
});
}
let UnexpectedRoleError = false;
if (modelOptions.stream) {
const stream = await openai.beta.chat.completions
.stream({
...modelOptions,
stream: true,
})
.on('abort', () => {
/* Do nothing here */
})
.on('error', (err) => {
handleOpenAIErrors(err, errorCallback, 'stream');
})
.on('finalChatCompletion', (finalChatCompletion) => {
const finalMessage = finalChatCompletion?.choices?.[0]?.message;
if (finalMessage && finalMessage?.role !== 'assistant') {
finalChatCompletion.choices[0].message.role = 'assistant';
}
if (finalMessage && !finalMessage?.content?.trim()) {
finalChatCompletion.choices[0].message.content = intermediateReply;
}
})
.on('finalMessage', (message) => {
if (message?.role !== 'assistant') {
stream.messages.push({ role: 'assistant', content: intermediateReply });
UnexpectedRoleError = true;
}
});
for await (const chunk of stream) {
const token = chunk.choices[0]?.delta?.content || '';
intermediateReply += token;
onProgress(token);
if (abortController.signal.aborted) {
stream.controller.abort();
break;
}
}
if (!UnexpectedRoleError) {
chatCompletion = await stream.finalChatCompletion().catch((err) => {
handleOpenAIErrors(err, errorCallback, 'finalChatCompletion');
});
}
}
// regular completion
else {
chatCompletion = await openai.chat.completions
.create({
...modelOptions,
})
.catch((err) => {
handleOpenAIErrors(err, errorCallback, 'create');
});
}
if (!chatCompletion && UnexpectedRoleError) {
throw new Error(
'OpenAI error: Invalid final message: OpenAI expects final message to include role=assistant',
);
} else if (!chatCompletion && error) {
throw new Error(error);
} else if (!chatCompletion) {
throw new Error('Chat completion failed');
}
const { message, finish_reason } = chatCompletion.choices[0];
if (chatCompletion && typeof clientOptions.addMetadata === 'function') {
clientOptions.addMetadata({ finish_reason });
}
logger.debug('[OpenAIClient] chatCompletion response', chatCompletion);
if (!message?.content?.trim() && intermediateReply.length) {
logger.debug(
'[OpenAIClient] chatCompletion: using intermediateReply due to empty message.content',
{ intermediateReply },
);
return intermediateReply;
}
return message.content;
} catch (err) {
if (
err?.message?.includes('abort') ||
(err instanceof OpenAI.APIError && err?.message?.includes('abort'))
) {
return intermediateReply;
}
if (
err?.message?.includes(
'OpenAI error: Invalid final message: OpenAI expects final message to include role=assistant',
) ||
err?.message?.includes(
'stream ended without producing a ChatCompletionMessage with role=assistant',
) ||
err?.message?.includes('The server had an error processing your request') ||
err?.message?.includes('missing finish_reason') ||
err?.message?.includes('missing role') ||
(err instanceof OpenAI.OpenAIError && err?.message?.includes('missing finish_reason'))
) {
logger.error('[OpenAIClient] Known OpenAI error:', err);
return intermediateReply;
} else if (err instanceof OpenAI.APIError) {
if (intermediateReply) {
return intermediateReply;
} else {
throw err;
}
} else {
logger.error('[OpenAIClient.chatCompletion] Unhandled error type', err);
throw err;
}
}
}
}
module.exports = OpenAIClient;