LibreChat/api/server/controllers/agents/openai.js
Danny Avila 5af1342dbb
🦥 refactor: Event-Driven Lazy Tool Loading (#11588)
* refactor: json schema tools with lazy loading

- Added LocalToolExecutor class for lazy loading and caching of tools during execution.
- Introduced ToolExecutionContext and ToolExecutor interfaces for better type management.
- Created utility functions to generate tool proxies with JSON schema support.
- Added ExtendedJsonSchema type for enhanced schema definitions.
- Updated existing toolkits to utilize the new schema and executor functionalities.
- Introduced a comprehensive tool definitions registry for managing various tool schemas.

chore: update @librechat/agents to version 3.1.2

refactor: enhance tool loading optimization and classification

- Improved the loadAgentToolsOptimized function to utilize a proxy pattern for all tools, enabling deferred execution and reducing overhead.
- Introduced caching for tool instances and refined tool classification logic to streamline tool management.
- Updated the handling of MCP tools to improve logging and error reporting for missing tools in the cache.
- Enhanced the structure of tool definitions to support better classification and integration with existing tools.

refactor: modularize tool loading and enhance optimization

- Moved the loadAgentToolsOptimized function to a new service file for better organization and maintainability.
- Updated the ToolService to utilize the new service for optimized tool loading, improving code clarity.
- Removed legacy tool loading methods and streamlined the tool loading process to enhance performance and reduce complexity.
- Introduced feature flag handling for optimized tool loading, allowing for easier toggling of this functionality.

refactor: replace loadAgentToolsWithFlag with loadAgentTools in tool loader

refactor: enhance MCP tool loading with proxy creation and classification

refactor: optimize MCP tool loading by grouping tools by server

- Introduced a Map to group cached tools by server name, improving the organization of tool data.
- Updated the createMCPProxyTool function to accept server name directly, enhancing clarity.
- Refactored the logic for handling MCP tools, streamlining the process of creating proxy tools for classification.

refactor: enhance MCP tool loading and proxy creation

- Added functionality to retrieve MCP server tools and reinitialize servers if necessary, improving tool availability.
- Updated the tool loading logic to utilize a Map for organizing tools by server, enhancing clarity and performance.
- Refactored the createToolProxy function to ensure a default response format, streamlining tool creation.

refactor: update createToolProxy to ensure consistent response format

- Modified the createToolProxy function to await the executor's execution and validate the result format.
- Ensured that the function returns a default response structure when the result is not an array of two elements, enhancing reliability in tool proxy creation.

refactor: ToolExecutionContext with toolCall property

- Added toolCall property to ToolExecutionContext interface for improved context handling during tool execution.
- Updated LocalToolExecutor to include toolCall in the runnable configuration, allowing for more flexible tool invocation.
- Modified createToolProxy to pass toolCall from the configuration, ensuring consistent context across tool executions.

refactor: enhance event-driven tool execution and logging

- Introduced ToolExecuteOptions for improved handling of event-driven tool execution, allowing for parallel execution of tool calls.
- Updated getDefaultHandlers to include support for ON_TOOL_EXECUTE events, enhancing the flexibility of tool invocation.
- Added detailed logging in LocalToolExecutor to track tool loading and execution metrics, improving observability and debugging capabilities.
- Refactored initializeClient to integrate event-driven tool loading, ensuring compatibility with the new execution model.

chore: update @librechat/agents to version 3.1.21

refactor: remove legacy tool loading and executor components

- Eliminated the loadAgentToolsWithFlag function, simplifying the tool loading process by directly using loadAgentTools.
- Removed the LocalToolExecutor and related executor components to streamline the tool execution architecture.
- Updated ToolService and related files to reflect the removal of deprecated features, enhancing code clarity and maintainability.

refactor: enhance tool classification and definitions handling

- Updated the loadAgentTools function to return toolDefinitions alongside toolRegistry, improving the structure of tool data returned to clients.
- Removed the convertRegistryToDefinitions function from the initialize.js file, simplifying the initialization process.
- Adjusted the buildToolClassification function to ensure toolDefinitions are built and returned simultaneously with the toolRegistry, enhancing efficiency in tool management.
- Updated type definitions in initialize.ts to include toolDefinitions, ensuring consistency across the codebase.

refactor: implement event-driven tool execution handler

- Introduced createToolExecuteHandler function to streamline the handling of ON_TOOL_EXECUTE events, allowing for parallel execution of tool calls.
- Updated getDefaultHandlers to utilize the new handler, simplifying the event-driven architecture.
- Added handlers.ts file to encapsulate tool execution logic, improving code organization and maintainability.
- Enhanced OpenAI handlers to integrate the new tool execution capabilities, ensuring consistent event handling across the application.

refactor: integrate event-driven tool execution options

- Added toolExecuteOptions to support event-driven tool execution in OpenAI and responses controllers, enhancing flexibility in tool handling.
- Updated handlers to utilize createToolExecuteHandler, allowing for streamlined execution of tools during agent interactions.
- Refactored service dependencies to include toolExecuteOptions, ensuring consistent integration across the application.

refactor: enhance tool loading with definitionsOnly parameter

- Updated createToolLoader and loadAgentTools functions to include a definitionsOnly parameter, allowing for the retrieval of only serializable tool definitions in event-driven mode.
- Adjusted related interfaces and documentation to reflect the new parameter, improving clarity and flexibility in tool management.
- Ensured compatibility across various components by integrating the definitionsOnly option in the initialization process.

refactor: improve agent tool presence check in initialization

- Added a check for tool presence using a new hasAgentTools variable, which evaluates both structuredTools and toolDefinitions.
- Updated the conditional logic in the agent initialization process to utilize the hasAgentTools variable, enhancing clarity and maintainability in tool management.

refactor: enhance agent tool extraction to support tool definitions

- Updated the extractMCPServers function to handle both tool instances and serializable tool definitions, improving flexibility in agent tool management.
- Added a new property toolDefinitions to the AgentWithTools type for better integration of event-driven mode.
- Enhanced documentation to clarify the function's capabilities in extracting unique MCP server names from both tools and tool definitions.

refactor: enhance tool classification and registry building

- Added serverName property to ToolDefinition for improved tool identification.
- Introduced buildToolRegistry function to streamline the creation of tool registries based on MCP tool definitions and agent options.
- Updated buildToolClassification to utilize the new registry building logic, ensuring basic definitions are returned even when advanced classification features are not allowed.
- Enhanced documentation and logging for clarity in tool classification processes.

refactor: update @librechat/agents dependency to version 3.1.22

fix: expose loadTools function in ToolService

- Added loadTools function to the exported module in ToolService.js, enhancing the accessibility of tool loading functionality.

chore: remove configurable options from tool execute options in OpenAI controller

refactor: enhance tool loading mechanism to utilize agent-specific context

chore: update @librechat/agents dependency to version 3.1.23

fix: simplify result handling in createToolExecuteHandler

* refactor: loadToolDefinitions for efficient tool loading in event-driven mode

* refactor: replace legacy tool loading with loadToolsForExecution in OpenAI and responses controllers

- Updated OpenAIChatCompletionController and createResponse functions to utilize loadToolsForExecution for improved tool loading.
- Removed deprecated loadToolsLegacy references, streamlining the tool execution process.
- Enhanced tool loading options to include agent-specific context and configurations.

* refactor: enhance tool loading and execution handling

- Introduced loadActionToolsForExecution function to streamline loading of action tools, improving organization and maintainability.
- Updated loadToolsForExecution to handle both regular and action tools, optimizing the tool loading process.
- Added detailed logging for missing tools in createToolExecuteHandler, enhancing error visibility.
- Refactored tool definitions to normalize action tool names, improving consistency in tool management.

* refactor: enhance built-in tool definitions loading

- Updated loadToolDefinitions to include descriptions and parameters from the tool registry for built-in tools, improving the clarity and usability of tool definitions.
- Integrated getToolDefinition to streamline the retrieval of tool metadata, enhancing the overall tool management process.

* feat: add action tool definitions loading to tool service

- Introduced getActionToolDefinitions function to load action tool definitions based on agent ID and tool names, enhancing the tool loading process.
- Updated loadToolDefinitions to integrate action tool definitions, allowing for better management and retrieval of action-specific tools.
- Added comprehensive tests for action tool definitions to ensure correct loading and parameter handling, improving overall reliability and functionality.

* chore: update @librechat/agents dependency to version 3.1.26

* refactor: add toolEndCallback to handle tool execution results

* fix: tool definitions and execution handling

- Introduced native tools (execute_code, file_search, web_search) to the tool service, allowing for better integration and management of these tools.
- Updated isBuiltInTool function to include native tools in the built-in check, improving tool recognition.
- Added comprehensive tests for loading parameters of native tools, ensuring correct functionality and parameter handling.
- Enhanced tool definitions registry to include new agent tool definitions, streamlining tool retrieval and management.

* refactor: enhance tool loading and execution context

- Added toolRegistry to the context for OpenAIChatCompletionController and createResponse functions, improving tool management.
- Updated loadToolsForExecution to utilize toolRegistry for better integration of programmatic tools and tool search functionalities.
- Enhanced the initialization process to include toolRegistry in agent context, streamlining tool access and configuration.
- Refactored tool classification logic to support event-driven execution, ensuring compatibility with new tool definitions.

* chore: add request duration logging to OpenAI and Responses controllers

- Introduced logging for request start and completion times in OpenAIChatCompletionController and createResponse functions.
- Calculated and logged the duration of each request, enhancing observability and performance tracking.
- Improved debugging capabilities by providing detailed logs for both streaming and non-streaming responses.

* chore: update @librechat/agents dependency to version 3.1.27

* refactor: implement buildToolSet function for tool management

- Introduced buildToolSet function to streamline the creation of tool sets from agent configurations, enhancing tool management across various controllers.
- Updated AgentClient, OpenAIChatCompletionController, and createResponse functions to utilize buildToolSet, improving consistency in tool handling.
- Added comprehensive tests for buildToolSet to ensure correct functionality and edge case handling, enhancing overall reliability.

* refactor: update import paths for ToolExecuteOptions and createToolExecuteHandler

* fix: update GoogleSearch.js description for maximum search results

- Changed the default maximum number of search results from 10 to 5 in the Google Search JSON schema description, ensuring accurate documentation of the expected behavior.

* chore: remove deprecated Browser tool and associated assets

- Deleted the Browser tool definition from manifest.json, which included its name, plugin key, description, and authentication configuration.
- Removed the web-browser.svg asset as it is no longer needed following the removal of the Browser tool.

* fix: ensure tool definitions are valid before processing

- Added a check to verify the existence of tool definitions in the registry before accessing their properties, preventing potential runtime errors.
- Updated the loading logic for built-in tool definitions to ensure that only valid definitions are pushed to the built-in tool definitions array.

* fix: extend ExtendedJsonSchema to support 'null' type and nullable enums

- Updated the ExtendedJsonSchema type to include 'null' as a valid type option.
- Modified the enum property to accept an array of values that can include strings, numbers, booleans, and null, enhancing schema flexibility.

* test: add comprehensive tests for tool definitions loading and registry behavior

- Implemented tests to verify the handling of built-in tools without registry definitions, ensuring they are skipped correctly.
- Added tests to confirm that built-in tools include descriptions and parameters in the registry.
- Enhanced tests for action tools, checking for proper inclusion of metadata and handling of tools without parameters in the registry.

* test: add tests for mixed-type and number enum schema handling

- Introduced tests to validate the parsing of mixed-type enum values, including strings, numbers, booleans, and null.
- Added tests for number enum schema values to ensure correct parsing of numeric inputs, enhancing schema validation coverage.

* fix: update mock implementation for @librechat/agents

- Changed the mock for @librechat/agents to spread the actual module's properties, ensuring that all necessary functionalities are preserved in tests.
- This adjustment enhances the accuracy of the tests by reflecting the real structure of the module.

* fix: change max_results type in GoogleSearch schema from number to integer

- Updated the type of max_results in the Google Search JSON schema to 'integer' for better type accuracy and validation consistency.

* fix: update max_results description and type in GoogleSearch schema

- Changed the type of max_results from 'number' to 'integer' for improved type accuracy.
- Updated the description to reflect the new default maximum number of search results, changing it from 10 to 5.

* refactor: remove unused code and improve tool registry handling

- Eliminated outdated comments and conditional logic related to event-driven mode in the ToolService.
- Enhanced the handling of the tool registry by ensuring it is configurable for better integration during tool execution.

* feat: add definitionsOnly option to buildToolClassification for event-driven mode

- Introduced a new parameter, definitionsOnly, to the BuildToolClassificationParams interface to enable a mode that skips tool instance creation.
- Updated the buildToolClassification function to conditionally add tool definitions without instantiating tools when definitionsOnly is true.
- Modified the loadToolDefinitions function to pass definitionsOnly as true, ensuring compatibility with the new feature.

* test: add unit tests for buildToolClassification with definitionsOnly option

- Implemented tests to verify the behavior of buildToolClassification when definitionsOnly is set to true or false.
- Ensured that tool instances are not created when definitionsOnly is true, while still adding necessary tool definitions.
- Confirmed that loadAuthValues is called appropriately based on the definitionsOnly parameter, enhancing test coverage for this new feature.
2026-02-01 08:50:57 -05:00

687 lines
20 KiB
JavaScript

const { nanoid } = require('nanoid');
const { logger } = require('@librechat/data-schemas');
const { EModelEndpoint, ResourceType, PermissionBits } = require('librechat-data-provider');
const {
Callback,
ToolEndHandler,
formatAgentMessages,
ChatModelStreamHandler,
} = require('@librechat/agents');
const {
writeSSE,
createRun,
createChunk,
buildToolSet,
sendFinalChunk,
createSafeUser,
validateRequest,
initializeAgent,
createErrorResponse,
buildNonStreamingResponse,
createOpenAIStreamTracker,
createOpenAIContentAggregator,
createToolExecuteHandler,
isChatCompletionValidationFailure,
} = require('@librechat/api');
const { loadAgentTools, loadToolsForExecution } = require('~/server/services/ToolService');
const { createToolEndCallback } = require('~/server/controllers/agents/callbacks');
const { findAccessibleResources } = require('~/server/services/PermissionService');
const { getConvoFiles } = require('~/models/Conversation');
const { getAgent, getAgents } = require('~/models/Agent');
const db = require('~/models');
/**
* Creates a tool loader function for the agent.
* @param {AbortSignal} signal - The abort signal
* @param {boolean} [definitionsOnly=true] - When true, returns only serializable
* tool definitions without creating full tool instances (for event-driven mode)
*/
function createToolLoader(signal, definitionsOnly = true) {
return async function loadTools({
req,
res,
tools,
model,
agentId,
provider,
tool_options,
tool_resources,
}) {
const agent = { id: agentId, tools, provider, model, tool_options };
try {
return await loadAgentTools({
req,
res,
agent,
signal,
tool_resources,
definitionsOnly,
streamId: null, // No resumable stream for OpenAI compat
});
} catch (error) {
logger.error('Error loading tools for agent ' + agentId, error);
}
};
}
/**
* Convert content part to internal format
* @param {Object} part - Content part
* @returns {Object} Converted part
*/
function convertContentPart(part) {
if (part.type === 'text') {
return { type: 'text', text: part.text };
}
if (part.type === 'image_url') {
return { type: 'image_url', image_url: part.image_url };
}
return part;
}
/**
* Convert OpenAI messages to internal format
* @param {Array} messages - OpenAI format messages
* @returns {Array} Internal format messages
*/
function convertMessages(messages) {
return messages.map((msg) => {
let content;
if (typeof msg.content === 'string') {
content = msg.content;
} else if (msg.content) {
content = msg.content.map(convertContentPart);
} else {
content = '';
}
return {
role: msg.role,
content,
...(msg.name && { name: msg.name }),
...(msg.tool_calls && { tool_calls: msg.tool_calls }),
...(msg.tool_call_id && { tool_call_id: msg.tool_call_id }),
};
});
}
/**
* Send an error response in OpenAI format
*/
function sendErrorResponse(res, statusCode, message, type = 'invalid_request_error', code = null) {
res.status(statusCode).json(createErrorResponse(message, type, code));
}
/**
* OpenAI-compatible chat completions controller for agents.
*
* POST /v1/chat/completions
*
* Request format:
* {
* "model": "agent_id_here",
* "messages": [{"role": "user", "content": "Hello!"}],
* "stream": true,
* "conversation_id": "optional",
* "parent_message_id": "optional"
* }
*/
const OpenAIChatCompletionController = async (req, res) => {
const appConfig = req.config;
const requestStartTime = Date.now();
// Validate request
const validation = validateRequest(req.body);
if (isChatCompletionValidationFailure(validation)) {
return sendErrorResponse(res, 400, validation.error);
}
const request = validation.request;
const agentId = request.model;
// Look up the agent
const agent = await getAgent({ id: agentId });
if (!agent) {
return sendErrorResponse(
res,
404,
`Agent not found: ${agentId}`,
'invalid_request_error',
'model_not_found',
);
}
// Generate IDs
const requestId = `chatcmpl-${nanoid()}`;
const conversationId = request.conversation_id ?? nanoid();
const parentMessageId = request.parent_message_id ?? null;
const created = Math.floor(Date.now() / 1000);
const context = {
created,
requestId,
model: agentId,
};
logger.debug(
`[OpenAI API] Request ${requestId} started for agent ${agentId}, stream: ${request.stream}`,
);
// Set up abort controller
const abortController = new AbortController();
// Handle client disconnect
req.on('close', () => {
if (!abortController.signal.aborted) {
abortController.abort();
logger.debug('[OpenAI API] Client disconnected, aborting');
}
});
try {
// Build allowed providers set
const allowedProviders = new Set(
appConfig?.endpoints?.[EModelEndpoint.agents]?.allowedProviders,
);
// Create tool loader
const loadTools = createToolLoader(abortController.signal);
// Initialize the agent first to check for disableStreaming
const endpointOption = {
endpoint: agent.provider,
model_parameters: agent.model_parameters ?? {},
};
const primaryConfig = await initializeAgent(
{
req,
res,
loadTools,
requestFiles: [],
conversationId,
parentMessageId,
agent,
endpointOption,
allowedProviders,
isInitialAgent: true,
},
{
getConvoFiles,
getFiles: db.getFiles,
getUserKey: db.getUserKey,
getMessages: db.getMessages,
updateFilesUsage: db.updateFilesUsage,
getUserKeyValues: db.getUserKeyValues,
getUserCodeFiles: db.getUserCodeFiles,
getToolFilesByIds: db.getToolFilesByIds,
getCodeGeneratedFiles: db.getCodeGeneratedFiles,
},
);
// Determine if streaming is enabled (check both request and agent config)
const streamingDisabled = !!primaryConfig.model_parameters?.disableStreaming;
const isStreaming = request.stream === true && !streamingDisabled;
// Create tracker for streaming or aggregator for non-streaming
const tracker = isStreaming ? createOpenAIStreamTracker() : null;
const aggregator = isStreaming ? null : createOpenAIContentAggregator();
// Set up response for streaming
if (isStreaming) {
res.setHeader('Content-Type', 'text/event-stream');
res.setHeader('Cache-Control', 'no-cache');
res.setHeader('Connection', 'keep-alive');
res.setHeader('X-Accel-Buffering', 'no');
res.flushHeaders();
// Send initial chunk with role
const initialChunk = createChunk(context, { role: 'assistant' });
writeSSE(res, initialChunk);
}
// Create handler config for OpenAI streaming (only used when streaming)
const handlerConfig = isStreaming
? {
res,
context,
tracker,
}
: null;
const collectedUsage = [];
/** @type {Promise<import('librechat-data-provider').TAttachment | null>[]} */
const artifactPromises = [];
const toolEndCallback = createToolEndCallback({ req, res, artifactPromises, streamId: null });
const toolExecuteOptions = {
loadTools: async (toolNames) => {
return loadToolsForExecution({
req,
res,
agent,
toolNames,
signal: abortController.signal,
toolRegistry: primaryConfig.toolRegistry,
userMCPAuthMap: primaryConfig.userMCPAuthMap,
tool_resources: primaryConfig.tool_resources,
});
},
toolEndCallback,
};
const openaiMessages = convertMessages(request.messages);
const toolSet = buildToolSet(primaryConfig);
const { messages: formattedMessages, indexTokenCountMap } = formatAgentMessages(
openaiMessages,
{},
toolSet,
);
/**
* Create a simple handler that processes data
*/
const createHandler = (processor) => ({
handle: (_event, data) => {
if (processor) {
processor(data);
}
},
});
/**
* Stream text content in OpenAI format
*/
const streamText = (text) => {
if (!text) {
return;
}
if (isStreaming) {
tracker.addText();
writeSSE(res, createChunk(context, { content: text }));
} else {
aggregator.addText(text);
}
};
/**
* Stream reasoning content in OpenAI format (OpenRouter convention)
*/
const streamReasoning = (text) => {
if (!text) {
return;
}
if (isStreaming) {
tracker.addReasoning();
writeSSE(res, createChunk(context, { reasoning: text }));
} else {
aggregator.addReasoning(text);
}
};
// Built-in handler for processing raw model stream chunks
const chatModelStreamHandler = new ChatModelStreamHandler();
// Event handlers for OpenAI-compatible streaming
const handlers = {
// Process raw model chunks and dispatch message/reasoning deltas
on_chat_model_stream: {
handle: async (event, data, metadata, graph) => {
await chatModelStreamHandler.handle(event, data, metadata, graph);
},
},
// Text content streaming
on_message_delta: createHandler((data) => {
const content = data?.delta?.content;
if (Array.isArray(content)) {
for (const part of content) {
if (part.type === 'text' && part.text) {
streamText(part.text);
}
}
}
}),
// Reasoning/thinking content streaming
on_reasoning_delta: createHandler((data) => {
const content = data?.delta?.content;
if (Array.isArray(content)) {
for (const part of content) {
const text = part.think || part.text;
if (text) {
streamReasoning(text);
}
}
}
}),
// Tool call initiation - streams id and name (from on_run_step)
on_run_step: createHandler((data) => {
const stepDetails = data?.stepDetails;
if (stepDetails?.type === 'tool_calls' && stepDetails.tool_calls) {
for (const tc of stepDetails.tool_calls) {
const toolIndex = data.index ?? 0;
const toolId = tc.id ?? '';
const toolName = tc.name ?? '';
const toolCall = {
id: toolId,
type: 'function',
function: { name: toolName, arguments: '' },
};
// Track tool call in tracker or aggregator
if (isStreaming) {
if (!tracker.toolCalls.has(toolIndex)) {
tracker.toolCalls.set(toolIndex, toolCall);
}
// Stream initial tool call chunk (like OpenAI does)
writeSSE(
res,
createChunk(context, {
tool_calls: [{ index: toolIndex, ...toolCall }],
}),
);
} else {
if (!aggregator.toolCalls.has(toolIndex)) {
aggregator.toolCalls.set(toolIndex, toolCall);
}
}
}
}
}),
// Tool call argument streaming (from on_run_step_delta)
on_run_step_delta: createHandler((data) => {
const delta = data?.delta;
if (delta?.type === 'tool_calls' && delta.tool_calls) {
for (const tc of delta.tool_calls) {
const args = tc.args ?? '';
if (!args) {
continue;
}
const toolIndex = tc.index ?? 0;
// Update tool call arguments
const targetMap = isStreaming ? tracker.toolCalls : aggregator.toolCalls;
const tracked = targetMap.get(toolIndex);
if (tracked) {
tracked.function.arguments += args;
}
// Stream argument delta (only for streaming)
if (isStreaming) {
writeSSE(
res,
createChunk(context, {
tool_calls: [
{
index: toolIndex,
function: { arguments: args },
},
],
}),
);
}
}
}
}),
// Usage tracking
on_chat_model_end: createHandler((data) => {
const usage = data?.output?.usage_metadata;
if (usage) {
collectedUsage.push(usage);
const target = isStreaming ? tracker : aggregator;
target.usage.promptTokens += usage.input_tokens ?? 0;
target.usage.completionTokens += usage.output_tokens ?? 0;
}
}),
on_run_step_completed: createHandler(),
// Use proper ToolEndHandler for processing artifacts (images, file citations, code output)
on_tool_end: new ToolEndHandler(toolEndCallback, logger),
on_chain_stream: createHandler(),
on_chain_end: createHandler(),
on_agent_update: createHandler(),
on_custom_event: createHandler(),
// Event-driven tool execution handler
on_tool_execute: createToolExecuteHandler(toolExecuteOptions),
};
// Create and run the agent
const userId = req.user?.id ?? 'api-user';
// Extract userMCPAuthMap from primaryConfig (needed for MCP tool connections)
const userMCPAuthMap = primaryConfig.userMCPAuthMap;
const run = await createRun({
agents: [primaryConfig],
messages: formattedMessages,
indexTokenCountMap,
runId: requestId,
signal: abortController.signal,
customHandlers: handlers,
requestBody: {
messageId: requestId,
conversationId,
},
user: { id: userId },
});
if (!run) {
throw new Error('Failed to create agent run');
}
// Process the stream
const config = {
runName: 'AgentRun',
configurable: {
thread_id: conversationId,
user_id: userId,
user: createSafeUser(req.user),
...(userMCPAuthMap != null && { userMCPAuthMap }),
},
signal: abortController.signal,
streamMode: 'values',
version: 'v2',
};
await run.processStream({ messages: formattedMessages }, config, {
callbacks: {
[Callback.TOOL_ERROR]: (graph, error, toolId) => {
logger.error(`[OpenAI API] Tool Error "${toolId}"`, error);
},
},
});
// Finalize response
const duration = Date.now() - requestStartTime;
if (isStreaming) {
sendFinalChunk(handlerConfig);
res.end();
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (streaming)`);
// Wait for artifact processing after response ends (non-blocking)
if (artifactPromises.length > 0) {
Promise.all(artifactPromises).catch((artifactError) => {
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
});
}
} else {
// For non-streaming, wait for artifacts before sending response
if (artifactPromises.length > 0) {
try {
await Promise.all(artifactPromises);
} catch (artifactError) {
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
}
}
// Build usage from aggregated data
const usage = {
prompt_tokens: aggregator.usage.promptTokens,
completion_tokens: aggregator.usage.completionTokens,
total_tokens: aggregator.usage.promptTokens + aggregator.usage.completionTokens,
};
if (aggregator.usage.reasoningTokens > 0) {
usage.completion_tokens_details = {
reasoning_tokens: aggregator.usage.reasoningTokens,
};
}
const response = buildNonStreamingResponse(
context,
aggregator.getText(),
aggregator.getReasoning(),
aggregator.toolCalls,
usage,
);
res.json(response);
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (non-streaming)`);
}
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'An error occurred';
logger.error('[OpenAI API] Error:', error);
// Check if we already started streaming (headers sent)
if (res.headersSent) {
// Headers already sent, send error in stream
const errorChunk = createChunk(context, { content: `\n\nError: ${errorMessage}` }, 'stop');
writeSSE(res, errorChunk);
writeSSE(res, '[DONE]');
res.end();
} else {
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
}
};
/**
* List available agents as models (filtered by remote access permissions)
*
* GET /v1/models
*/
const ListModelsController = async (req, res) => {
try {
const userId = req.user?.id;
const userRole = req.user?.role;
if (!userId) {
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
}
// Find agents the user has remote access to (VIEW permission on REMOTE_AGENT)
const accessibleAgentIds = await findAccessibleResources({
userId,
role: userRole,
resourceType: ResourceType.REMOTE_AGENT,
requiredPermissions: PermissionBits.VIEW,
});
// Get the accessible agents
let agents = [];
if (accessibleAgentIds.length > 0) {
agents = await getAgents({ _id: { $in: accessibleAgentIds } });
}
const models = agents.map((agent) => ({
id: agent.id,
object: 'model',
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
owned_by: 'librechat',
permission: [],
root: agent.id,
parent: null,
// LibreChat extensions
name: agent.name,
description: agent.description,
provider: agent.provider,
}));
res.json({
object: 'list',
data: models,
});
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'Failed to list models';
logger.error('[OpenAI API] Error listing models:', error);
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
};
/**
* Get a specific model/agent (with remote access permission check)
*
* GET /v1/models/:model
*/
const GetModelController = async (req, res) => {
try {
const { model } = req.params;
const userId = req.user?.id;
const userRole = req.user?.role;
if (!userId) {
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
}
const agent = await getAgent({ id: model });
if (!agent) {
return sendErrorResponse(
res,
404,
`Model not found: ${model}`,
'invalid_request_error',
'model_not_found',
);
}
// Check if user has remote access to this agent
const accessibleAgentIds = await findAccessibleResources({
userId,
role: userRole,
resourceType: ResourceType.REMOTE_AGENT,
requiredPermissions: PermissionBits.VIEW,
});
const hasAccess = accessibleAgentIds.some((id) => id.toString() === agent._id.toString());
if (!hasAccess) {
return sendErrorResponse(
res,
403,
`No remote access to model: ${model}`,
'permission_error',
'access_denied',
);
}
res.json({
id: agent.id,
object: 'model',
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
owned_by: 'librechat',
permission: [],
root: agent.id,
parent: null,
// LibreChat extensions
name: agent.name,
description: agent.description,
provider: agent.provider,
});
} catch (error) {
const errorMessage = error instanceof Error ? error.message : 'Failed to get model';
logger.error('[OpenAI API] Error getting model:', error);
sendErrorResponse(res, 500, errorMessage, 'server_error');
}
};
module.exports = {
OpenAIChatCompletionController,
ListModelsController,
GetModelController,
};