mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-02-02 07:41:49 +01:00
* refactor: json schema tools with lazy loading - Added LocalToolExecutor class for lazy loading and caching of tools during execution. - Introduced ToolExecutionContext and ToolExecutor interfaces for better type management. - Created utility functions to generate tool proxies with JSON schema support. - Added ExtendedJsonSchema type for enhanced schema definitions. - Updated existing toolkits to utilize the new schema and executor functionalities. - Introduced a comprehensive tool definitions registry for managing various tool schemas. chore: update @librechat/agents to version 3.1.2 refactor: enhance tool loading optimization and classification - Improved the loadAgentToolsOptimized function to utilize a proxy pattern for all tools, enabling deferred execution and reducing overhead. - Introduced caching for tool instances and refined tool classification logic to streamline tool management. - Updated the handling of MCP tools to improve logging and error reporting for missing tools in the cache. - Enhanced the structure of tool definitions to support better classification and integration with existing tools. refactor: modularize tool loading and enhance optimization - Moved the loadAgentToolsOptimized function to a new service file for better organization and maintainability. - Updated the ToolService to utilize the new service for optimized tool loading, improving code clarity. - Removed legacy tool loading methods and streamlined the tool loading process to enhance performance and reduce complexity. - Introduced feature flag handling for optimized tool loading, allowing for easier toggling of this functionality. refactor: replace loadAgentToolsWithFlag with loadAgentTools in tool loader refactor: enhance MCP tool loading with proxy creation and classification refactor: optimize MCP tool loading by grouping tools by server - Introduced a Map to group cached tools by server name, improving the organization of tool data. - Updated the createMCPProxyTool function to accept server name directly, enhancing clarity. - Refactored the logic for handling MCP tools, streamlining the process of creating proxy tools for classification. refactor: enhance MCP tool loading and proxy creation - Added functionality to retrieve MCP server tools and reinitialize servers if necessary, improving tool availability. - Updated the tool loading logic to utilize a Map for organizing tools by server, enhancing clarity and performance. - Refactored the createToolProxy function to ensure a default response format, streamlining tool creation. refactor: update createToolProxy to ensure consistent response format - Modified the createToolProxy function to await the executor's execution and validate the result format. - Ensured that the function returns a default response structure when the result is not an array of two elements, enhancing reliability in tool proxy creation. refactor: ToolExecutionContext with toolCall property - Added toolCall property to ToolExecutionContext interface for improved context handling during tool execution. - Updated LocalToolExecutor to include toolCall in the runnable configuration, allowing for more flexible tool invocation. - Modified createToolProxy to pass toolCall from the configuration, ensuring consistent context across tool executions. refactor: enhance event-driven tool execution and logging - Introduced ToolExecuteOptions for improved handling of event-driven tool execution, allowing for parallel execution of tool calls. - Updated getDefaultHandlers to include support for ON_TOOL_EXECUTE events, enhancing the flexibility of tool invocation. - Added detailed logging in LocalToolExecutor to track tool loading and execution metrics, improving observability and debugging capabilities. - Refactored initializeClient to integrate event-driven tool loading, ensuring compatibility with the new execution model. chore: update @librechat/agents to version 3.1.21 refactor: remove legacy tool loading and executor components - Eliminated the loadAgentToolsWithFlag function, simplifying the tool loading process by directly using loadAgentTools. - Removed the LocalToolExecutor and related executor components to streamline the tool execution architecture. - Updated ToolService and related files to reflect the removal of deprecated features, enhancing code clarity and maintainability. refactor: enhance tool classification and definitions handling - Updated the loadAgentTools function to return toolDefinitions alongside toolRegistry, improving the structure of tool data returned to clients. - Removed the convertRegistryToDefinitions function from the initialize.js file, simplifying the initialization process. - Adjusted the buildToolClassification function to ensure toolDefinitions are built and returned simultaneously with the toolRegistry, enhancing efficiency in tool management. - Updated type definitions in initialize.ts to include toolDefinitions, ensuring consistency across the codebase. refactor: implement event-driven tool execution handler - Introduced createToolExecuteHandler function to streamline the handling of ON_TOOL_EXECUTE events, allowing for parallel execution of tool calls. - Updated getDefaultHandlers to utilize the new handler, simplifying the event-driven architecture. - Added handlers.ts file to encapsulate tool execution logic, improving code organization and maintainability. - Enhanced OpenAI handlers to integrate the new tool execution capabilities, ensuring consistent event handling across the application. refactor: integrate event-driven tool execution options - Added toolExecuteOptions to support event-driven tool execution in OpenAI and responses controllers, enhancing flexibility in tool handling. - Updated handlers to utilize createToolExecuteHandler, allowing for streamlined execution of tools during agent interactions. - Refactored service dependencies to include toolExecuteOptions, ensuring consistent integration across the application. refactor: enhance tool loading with definitionsOnly parameter - Updated createToolLoader and loadAgentTools functions to include a definitionsOnly parameter, allowing for the retrieval of only serializable tool definitions in event-driven mode. - Adjusted related interfaces and documentation to reflect the new parameter, improving clarity and flexibility in tool management. - Ensured compatibility across various components by integrating the definitionsOnly option in the initialization process. refactor: improve agent tool presence check in initialization - Added a check for tool presence using a new hasAgentTools variable, which evaluates both structuredTools and toolDefinitions. - Updated the conditional logic in the agent initialization process to utilize the hasAgentTools variable, enhancing clarity and maintainability in tool management. refactor: enhance agent tool extraction to support tool definitions - Updated the extractMCPServers function to handle both tool instances and serializable tool definitions, improving flexibility in agent tool management. - Added a new property toolDefinitions to the AgentWithTools type for better integration of event-driven mode. - Enhanced documentation to clarify the function's capabilities in extracting unique MCP server names from both tools and tool definitions. refactor: enhance tool classification and registry building - Added serverName property to ToolDefinition for improved tool identification. - Introduced buildToolRegistry function to streamline the creation of tool registries based on MCP tool definitions and agent options. - Updated buildToolClassification to utilize the new registry building logic, ensuring basic definitions are returned even when advanced classification features are not allowed. - Enhanced documentation and logging for clarity in tool classification processes. refactor: update @librechat/agents dependency to version 3.1.22 fix: expose loadTools function in ToolService - Added loadTools function to the exported module in ToolService.js, enhancing the accessibility of tool loading functionality. chore: remove configurable options from tool execute options in OpenAI controller refactor: enhance tool loading mechanism to utilize agent-specific context chore: update @librechat/agents dependency to version 3.1.23 fix: simplify result handling in createToolExecuteHandler * refactor: loadToolDefinitions for efficient tool loading in event-driven mode * refactor: replace legacy tool loading with loadToolsForExecution in OpenAI and responses controllers - Updated OpenAIChatCompletionController and createResponse functions to utilize loadToolsForExecution for improved tool loading. - Removed deprecated loadToolsLegacy references, streamlining the tool execution process. - Enhanced tool loading options to include agent-specific context and configurations. * refactor: enhance tool loading and execution handling - Introduced loadActionToolsForExecution function to streamline loading of action tools, improving organization and maintainability. - Updated loadToolsForExecution to handle both regular and action tools, optimizing the tool loading process. - Added detailed logging for missing tools in createToolExecuteHandler, enhancing error visibility. - Refactored tool definitions to normalize action tool names, improving consistency in tool management. * refactor: enhance built-in tool definitions loading - Updated loadToolDefinitions to include descriptions and parameters from the tool registry for built-in tools, improving the clarity and usability of tool definitions. - Integrated getToolDefinition to streamline the retrieval of tool metadata, enhancing the overall tool management process. * feat: add action tool definitions loading to tool service - Introduced getActionToolDefinitions function to load action tool definitions based on agent ID and tool names, enhancing the tool loading process. - Updated loadToolDefinitions to integrate action tool definitions, allowing for better management and retrieval of action-specific tools. - Added comprehensive tests for action tool definitions to ensure correct loading and parameter handling, improving overall reliability and functionality. * chore: update @librechat/agents dependency to version 3.1.26 * refactor: add toolEndCallback to handle tool execution results * fix: tool definitions and execution handling - Introduced native tools (execute_code, file_search, web_search) to the tool service, allowing for better integration and management of these tools. - Updated isBuiltInTool function to include native tools in the built-in check, improving tool recognition. - Added comprehensive tests for loading parameters of native tools, ensuring correct functionality and parameter handling. - Enhanced tool definitions registry to include new agent tool definitions, streamlining tool retrieval and management. * refactor: enhance tool loading and execution context - Added toolRegistry to the context for OpenAIChatCompletionController and createResponse functions, improving tool management. - Updated loadToolsForExecution to utilize toolRegistry for better integration of programmatic tools and tool search functionalities. - Enhanced the initialization process to include toolRegistry in agent context, streamlining tool access and configuration. - Refactored tool classification logic to support event-driven execution, ensuring compatibility with new tool definitions. * chore: add request duration logging to OpenAI and Responses controllers - Introduced logging for request start and completion times in OpenAIChatCompletionController and createResponse functions. - Calculated and logged the duration of each request, enhancing observability and performance tracking. - Improved debugging capabilities by providing detailed logs for both streaming and non-streaming responses. * chore: update @librechat/agents dependency to version 3.1.27 * refactor: implement buildToolSet function for tool management - Introduced buildToolSet function to streamline the creation of tool sets from agent configurations, enhancing tool management across various controllers. - Updated AgentClient, OpenAIChatCompletionController, and createResponse functions to utilize buildToolSet, improving consistency in tool handling. - Added comprehensive tests for buildToolSet to ensure correct functionality and edge case handling, enhancing overall reliability. * refactor: update import paths for ToolExecuteOptions and createToolExecuteHandler * fix: update GoogleSearch.js description for maximum search results - Changed the default maximum number of search results from 10 to 5 in the Google Search JSON schema description, ensuring accurate documentation of the expected behavior. * chore: remove deprecated Browser tool and associated assets - Deleted the Browser tool definition from manifest.json, which included its name, plugin key, description, and authentication configuration. - Removed the web-browser.svg asset as it is no longer needed following the removal of the Browser tool. * fix: ensure tool definitions are valid before processing - Added a check to verify the existence of tool definitions in the registry before accessing their properties, preventing potential runtime errors. - Updated the loading logic for built-in tool definitions to ensure that only valid definitions are pushed to the built-in tool definitions array. * fix: extend ExtendedJsonSchema to support 'null' type and nullable enums - Updated the ExtendedJsonSchema type to include 'null' as a valid type option. - Modified the enum property to accept an array of values that can include strings, numbers, booleans, and null, enhancing schema flexibility. * test: add comprehensive tests for tool definitions loading and registry behavior - Implemented tests to verify the handling of built-in tools without registry definitions, ensuring they are skipped correctly. - Added tests to confirm that built-in tools include descriptions and parameters in the registry. - Enhanced tests for action tools, checking for proper inclusion of metadata and handling of tools without parameters in the registry. * test: add tests for mixed-type and number enum schema handling - Introduced tests to validate the parsing of mixed-type enum values, including strings, numbers, booleans, and null. - Added tests for number enum schema values to ensure correct parsing of numeric inputs, enhancing schema validation coverage. * fix: update mock implementation for @librechat/agents - Changed the mock for @librechat/agents to spread the actual module's properties, ensuring that all necessary functionalities are preserved in tests. - This adjustment enhances the accuracy of the tests by reflecting the real structure of the module. * fix: change max_results type in GoogleSearch schema from number to integer - Updated the type of max_results in the Google Search JSON schema to 'integer' for better type accuracy and validation consistency. * fix: update max_results description and type in GoogleSearch schema - Changed the type of max_results from 'number' to 'integer' for improved type accuracy. - Updated the description to reflect the new default maximum number of search results, changing it from 10 to 5. * refactor: remove unused code and improve tool registry handling - Eliminated outdated comments and conditional logic related to event-driven mode in the ToolService. - Enhanced the handling of the tool registry by ensuring it is configurable for better integration during tool execution. * feat: add definitionsOnly option to buildToolClassification for event-driven mode - Introduced a new parameter, definitionsOnly, to the BuildToolClassificationParams interface to enable a mode that skips tool instance creation. - Updated the buildToolClassification function to conditionally add tool definitions without instantiating tools when definitionsOnly is true. - Modified the loadToolDefinitions function to pass definitionsOnly as true, ensuring compatibility with the new feature. * test: add unit tests for buildToolClassification with definitionsOnly option - Implemented tests to verify the behavior of buildToolClassification when definitionsOnly is set to true or false. - Ensured that tool instances are not created when definitionsOnly is true, while still adding necessary tool definitions. - Confirmed that loadAuthValues is called appropriately based on the definitionsOnly parameter, enhancing test coverage for this new feature.
687 lines
20 KiB
JavaScript
687 lines
20 KiB
JavaScript
const { nanoid } = require('nanoid');
|
|
const { logger } = require('@librechat/data-schemas');
|
|
const { EModelEndpoint, ResourceType, PermissionBits } = require('librechat-data-provider');
|
|
const {
|
|
Callback,
|
|
ToolEndHandler,
|
|
formatAgentMessages,
|
|
ChatModelStreamHandler,
|
|
} = require('@librechat/agents');
|
|
const {
|
|
writeSSE,
|
|
createRun,
|
|
createChunk,
|
|
buildToolSet,
|
|
sendFinalChunk,
|
|
createSafeUser,
|
|
validateRequest,
|
|
initializeAgent,
|
|
createErrorResponse,
|
|
buildNonStreamingResponse,
|
|
createOpenAIStreamTracker,
|
|
createOpenAIContentAggregator,
|
|
createToolExecuteHandler,
|
|
isChatCompletionValidationFailure,
|
|
} = require('@librechat/api');
|
|
const { loadAgentTools, loadToolsForExecution } = require('~/server/services/ToolService');
|
|
const { createToolEndCallback } = require('~/server/controllers/agents/callbacks');
|
|
const { findAccessibleResources } = require('~/server/services/PermissionService');
|
|
const { getConvoFiles } = require('~/models/Conversation');
|
|
const { getAgent, getAgents } = require('~/models/Agent');
|
|
const db = require('~/models');
|
|
|
|
/**
|
|
* Creates a tool loader function for the agent.
|
|
* @param {AbortSignal} signal - The abort signal
|
|
* @param {boolean} [definitionsOnly=true] - When true, returns only serializable
|
|
* tool definitions without creating full tool instances (for event-driven mode)
|
|
*/
|
|
function createToolLoader(signal, definitionsOnly = true) {
|
|
return async function loadTools({
|
|
req,
|
|
res,
|
|
tools,
|
|
model,
|
|
agentId,
|
|
provider,
|
|
tool_options,
|
|
tool_resources,
|
|
}) {
|
|
const agent = { id: agentId, tools, provider, model, tool_options };
|
|
try {
|
|
return await loadAgentTools({
|
|
req,
|
|
res,
|
|
agent,
|
|
signal,
|
|
tool_resources,
|
|
definitionsOnly,
|
|
streamId: null, // No resumable stream for OpenAI compat
|
|
});
|
|
} catch (error) {
|
|
logger.error('Error loading tools for agent ' + agentId, error);
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Convert content part to internal format
|
|
* @param {Object} part - Content part
|
|
* @returns {Object} Converted part
|
|
*/
|
|
function convertContentPart(part) {
|
|
if (part.type === 'text') {
|
|
return { type: 'text', text: part.text };
|
|
}
|
|
if (part.type === 'image_url') {
|
|
return { type: 'image_url', image_url: part.image_url };
|
|
}
|
|
return part;
|
|
}
|
|
|
|
/**
|
|
* Convert OpenAI messages to internal format
|
|
* @param {Array} messages - OpenAI format messages
|
|
* @returns {Array} Internal format messages
|
|
*/
|
|
function convertMessages(messages) {
|
|
return messages.map((msg) => {
|
|
let content;
|
|
if (typeof msg.content === 'string') {
|
|
content = msg.content;
|
|
} else if (msg.content) {
|
|
content = msg.content.map(convertContentPart);
|
|
} else {
|
|
content = '';
|
|
}
|
|
|
|
return {
|
|
role: msg.role,
|
|
content,
|
|
...(msg.name && { name: msg.name }),
|
|
...(msg.tool_calls && { tool_calls: msg.tool_calls }),
|
|
...(msg.tool_call_id && { tool_call_id: msg.tool_call_id }),
|
|
};
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Send an error response in OpenAI format
|
|
*/
|
|
function sendErrorResponse(res, statusCode, message, type = 'invalid_request_error', code = null) {
|
|
res.status(statusCode).json(createErrorResponse(message, type, code));
|
|
}
|
|
|
|
/**
|
|
* OpenAI-compatible chat completions controller for agents.
|
|
*
|
|
* POST /v1/chat/completions
|
|
*
|
|
* Request format:
|
|
* {
|
|
* "model": "agent_id_here",
|
|
* "messages": [{"role": "user", "content": "Hello!"}],
|
|
* "stream": true,
|
|
* "conversation_id": "optional",
|
|
* "parent_message_id": "optional"
|
|
* }
|
|
*/
|
|
const OpenAIChatCompletionController = async (req, res) => {
|
|
const appConfig = req.config;
|
|
const requestStartTime = Date.now();
|
|
|
|
// Validate request
|
|
const validation = validateRequest(req.body);
|
|
if (isChatCompletionValidationFailure(validation)) {
|
|
return sendErrorResponse(res, 400, validation.error);
|
|
}
|
|
|
|
const request = validation.request;
|
|
const agentId = request.model;
|
|
|
|
// Look up the agent
|
|
const agent = await getAgent({ id: agentId });
|
|
if (!agent) {
|
|
return sendErrorResponse(
|
|
res,
|
|
404,
|
|
`Agent not found: ${agentId}`,
|
|
'invalid_request_error',
|
|
'model_not_found',
|
|
);
|
|
}
|
|
|
|
// Generate IDs
|
|
const requestId = `chatcmpl-${nanoid()}`;
|
|
const conversationId = request.conversation_id ?? nanoid();
|
|
const parentMessageId = request.parent_message_id ?? null;
|
|
const created = Math.floor(Date.now() / 1000);
|
|
|
|
const context = {
|
|
created,
|
|
requestId,
|
|
model: agentId,
|
|
};
|
|
|
|
logger.debug(
|
|
`[OpenAI API] Request ${requestId} started for agent ${agentId}, stream: ${request.stream}`,
|
|
);
|
|
|
|
// Set up abort controller
|
|
const abortController = new AbortController();
|
|
|
|
// Handle client disconnect
|
|
req.on('close', () => {
|
|
if (!abortController.signal.aborted) {
|
|
abortController.abort();
|
|
logger.debug('[OpenAI API] Client disconnected, aborting');
|
|
}
|
|
});
|
|
|
|
try {
|
|
// Build allowed providers set
|
|
const allowedProviders = new Set(
|
|
appConfig?.endpoints?.[EModelEndpoint.agents]?.allowedProviders,
|
|
);
|
|
|
|
// Create tool loader
|
|
const loadTools = createToolLoader(abortController.signal);
|
|
|
|
// Initialize the agent first to check for disableStreaming
|
|
const endpointOption = {
|
|
endpoint: agent.provider,
|
|
model_parameters: agent.model_parameters ?? {},
|
|
};
|
|
|
|
const primaryConfig = await initializeAgent(
|
|
{
|
|
req,
|
|
res,
|
|
loadTools,
|
|
requestFiles: [],
|
|
conversationId,
|
|
parentMessageId,
|
|
agent,
|
|
endpointOption,
|
|
allowedProviders,
|
|
isInitialAgent: true,
|
|
},
|
|
{
|
|
getConvoFiles,
|
|
getFiles: db.getFiles,
|
|
getUserKey: db.getUserKey,
|
|
getMessages: db.getMessages,
|
|
updateFilesUsage: db.updateFilesUsage,
|
|
getUserKeyValues: db.getUserKeyValues,
|
|
getUserCodeFiles: db.getUserCodeFiles,
|
|
getToolFilesByIds: db.getToolFilesByIds,
|
|
getCodeGeneratedFiles: db.getCodeGeneratedFiles,
|
|
},
|
|
);
|
|
|
|
// Determine if streaming is enabled (check both request and agent config)
|
|
const streamingDisabled = !!primaryConfig.model_parameters?.disableStreaming;
|
|
const isStreaming = request.stream === true && !streamingDisabled;
|
|
|
|
// Create tracker for streaming or aggregator for non-streaming
|
|
const tracker = isStreaming ? createOpenAIStreamTracker() : null;
|
|
const aggregator = isStreaming ? null : createOpenAIContentAggregator();
|
|
|
|
// Set up response for streaming
|
|
if (isStreaming) {
|
|
res.setHeader('Content-Type', 'text/event-stream');
|
|
res.setHeader('Cache-Control', 'no-cache');
|
|
res.setHeader('Connection', 'keep-alive');
|
|
res.setHeader('X-Accel-Buffering', 'no');
|
|
res.flushHeaders();
|
|
|
|
// Send initial chunk with role
|
|
const initialChunk = createChunk(context, { role: 'assistant' });
|
|
writeSSE(res, initialChunk);
|
|
}
|
|
|
|
// Create handler config for OpenAI streaming (only used when streaming)
|
|
const handlerConfig = isStreaming
|
|
? {
|
|
res,
|
|
context,
|
|
tracker,
|
|
}
|
|
: null;
|
|
|
|
const collectedUsage = [];
|
|
/** @type {Promise<import('librechat-data-provider').TAttachment | null>[]} */
|
|
const artifactPromises = [];
|
|
|
|
const toolEndCallback = createToolEndCallback({ req, res, artifactPromises, streamId: null });
|
|
|
|
const toolExecuteOptions = {
|
|
loadTools: async (toolNames) => {
|
|
return loadToolsForExecution({
|
|
req,
|
|
res,
|
|
agent,
|
|
toolNames,
|
|
signal: abortController.signal,
|
|
toolRegistry: primaryConfig.toolRegistry,
|
|
userMCPAuthMap: primaryConfig.userMCPAuthMap,
|
|
tool_resources: primaryConfig.tool_resources,
|
|
});
|
|
},
|
|
toolEndCallback,
|
|
};
|
|
|
|
const openaiMessages = convertMessages(request.messages);
|
|
|
|
const toolSet = buildToolSet(primaryConfig);
|
|
const { messages: formattedMessages, indexTokenCountMap } = formatAgentMessages(
|
|
openaiMessages,
|
|
{},
|
|
toolSet,
|
|
);
|
|
|
|
/**
|
|
* Create a simple handler that processes data
|
|
*/
|
|
const createHandler = (processor) => ({
|
|
handle: (_event, data) => {
|
|
if (processor) {
|
|
processor(data);
|
|
}
|
|
},
|
|
});
|
|
|
|
/**
|
|
* Stream text content in OpenAI format
|
|
*/
|
|
const streamText = (text) => {
|
|
if (!text) {
|
|
return;
|
|
}
|
|
if (isStreaming) {
|
|
tracker.addText();
|
|
writeSSE(res, createChunk(context, { content: text }));
|
|
} else {
|
|
aggregator.addText(text);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Stream reasoning content in OpenAI format (OpenRouter convention)
|
|
*/
|
|
const streamReasoning = (text) => {
|
|
if (!text) {
|
|
return;
|
|
}
|
|
if (isStreaming) {
|
|
tracker.addReasoning();
|
|
writeSSE(res, createChunk(context, { reasoning: text }));
|
|
} else {
|
|
aggregator.addReasoning(text);
|
|
}
|
|
};
|
|
|
|
// Built-in handler for processing raw model stream chunks
|
|
const chatModelStreamHandler = new ChatModelStreamHandler();
|
|
|
|
// Event handlers for OpenAI-compatible streaming
|
|
const handlers = {
|
|
// Process raw model chunks and dispatch message/reasoning deltas
|
|
on_chat_model_stream: {
|
|
handle: async (event, data, metadata, graph) => {
|
|
await chatModelStreamHandler.handle(event, data, metadata, graph);
|
|
},
|
|
},
|
|
|
|
// Text content streaming
|
|
on_message_delta: createHandler((data) => {
|
|
const content = data?.delta?.content;
|
|
if (Array.isArray(content)) {
|
|
for (const part of content) {
|
|
if (part.type === 'text' && part.text) {
|
|
streamText(part.text);
|
|
}
|
|
}
|
|
}
|
|
}),
|
|
|
|
// Reasoning/thinking content streaming
|
|
on_reasoning_delta: createHandler((data) => {
|
|
const content = data?.delta?.content;
|
|
if (Array.isArray(content)) {
|
|
for (const part of content) {
|
|
const text = part.think || part.text;
|
|
if (text) {
|
|
streamReasoning(text);
|
|
}
|
|
}
|
|
}
|
|
}),
|
|
|
|
// Tool call initiation - streams id and name (from on_run_step)
|
|
on_run_step: createHandler((data) => {
|
|
const stepDetails = data?.stepDetails;
|
|
if (stepDetails?.type === 'tool_calls' && stepDetails.tool_calls) {
|
|
for (const tc of stepDetails.tool_calls) {
|
|
const toolIndex = data.index ?? 0;
|
|
const toolId = tc.id ?? '';
|
|
const toolName = tc.name ?? '';
|
|
const toolCall = {
|
|
id: toolId,
|
|
type: 'function',
|
|
function: { name: toolName, arguments: '' },
|
|
};
|
|
|
|
// Track tool call in tracker or aggregator
|
|
if (isStreaming) {
|
|
if (!tracker.toolCalls.has(toolIndex)) {
|
|
tracker.toolCalls.set(toolIndex, toolCall);
|
|
}
|
|
// Stream initial tool call chunk (like OpenAI does)
|
|
writeSSE(
|
|
res,
|
|
createChunk(context, {
|
|
tool_calls: [{ index: toolIndex, ...toolCall }],
|
|
}),
|
|
);
|
|
} else {
|
|
if (!aggregator.toolCalls.has(toolIndex)) {
|
|
aggregator.toolCalls.set(toolIndex, toolCall);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}),
|
|
|
|
// Tool call argument streaming (from on_run_step_delta)
|
|
on_run_step_delta: createHandler((data) => {
|
|
const delta = data?.delta;
|
|
if (delta?.type === 'tool_calls' && delta.tool_calls) {
|
|
for (const tc of delta.tool_calls) {
|
|
const args = tc.args ?? '';
|
|
if (!args) {
|
|
continue;
|
|
}
|
|
|
|
const toolIndex = tc.index ?? 0;
|
|
|
|
// Update tool call arguments
|
|
const targetMap = isStreaming ? tracker.toolCalls : aggregator.toolCalls;
|
|
const tracked = targetMap.get(toolIndex);
|
|
if (tracked) {
|
|
tracked.function.arguments += args;
|
|
}
|
|
|
|
// Stream argument delta (only for streaming)
|
|
if (isStreaming) {
|
|
writeSSE(
|
|
res,
|
|
createChunk(context, {
|
|
tool_calls: [
|
|
{
|
|
index: toolIndex,
|
|
function: { arguments: args },
|
|
},
|
|
],
|
|
}),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}),
|
|
|
|
// Usage tracking
|
|
on_chat_model_end: createHandler((data) => {
|
|
const usage = data?.output?.usage_metadata;
|
|
if (usage) {
|
|
collectedUsage.push(usage);
|
|
const target = isStreaming ? tracker : aggregator;
|
|
target.usage.promptTokens += usage.input_tokens ?? 0;
|
|
target.usage.completionTokens += usage.output_tokens ?? 0;
|
|
}
|
|
}),
|
|
on_run_step_completed: createHandler(),
|
|
// Use proper ToolEndHandler for processing artifacts (images, file citations, code output)
|
|
on_tool_end: new ToolEndHandler(toolEndCallback, logger),
|
|
on_chain_stream: createHandler(),
|
|
on_chain_end: createHandler(),
|
|
on_agent_update: createHandler(),
|
|
on_custom_event: createHandler(),
|
|
// Event-driven tool execution handler
|
|
on_tool_execute: createToolExecuteHandler(toolExecuteOptions),
|
|
};
|
|
|
|
// Create and run the agent
|
|
const userId = req.user?.id ?? 'api-user';
|
|
|
|
// Extract userMCPAuthMap from primaryConfig (needed for MCP tool connections)
|
|
const userMCPAuthMap = primaryConfig.userMCPAuthMap;
|
|
|
|
const run = await createRun({
|
|
agents: [primaryConfig],
|
|
messages: formattedMessages,
|
|
indexTokenCountMap,
|
|
runId: requestId,
|
|
signal: abortController.signal,
|
|
customHandlers: handlers,
|
|
requestBody: {
|
|
messageId: requestId,
|
|
conversationId,
|
|
},
|
|
user: { id: userId },
|
|
});
|
|
|
|
if (!run) {
|
|
throw new Error('Failed to create agent run');
|
|
}
|
|
|
|
// Process the stream
|
|
const config = {
|
|
runName: 'AgentRun',
|
|
configurable: {
|
|
thread_id: conversationId,
|
|
user_id: userId,
|
|
user: createSafeUser(req.user),
|
|
...(userMCPAuthMap != null && { userMCPAuthMap }),
|
|
},
|
|
signal: abortController.signal,
|
|
streamMode: 'values',
|
|
version: 'v2',
|
|
};
|
|
|
|
await run.processStream({ messages: formattedMessages }, config, {
|
|
callbacks: {
|
|
[Callback.TOOL_ERROR]: (graph, error, toolId) => {
|
|
logger.error(`[OpenAI API] Tool Error "${toolId}"`, error);
|
|
},
|
|
},
|
|
});
|
|
|
|
// Finalize response
|
|
const duration = Date.now() - requestStartTime;
|
|
if (isStreaming) {
|
|
sendFinalChunk(handlerConfig);
|
|
res.end();
|
|
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (streaming)`);
|
|
|
|
// Wait for artifact processing after response ends (non-blocking)
|
|
if (artifactPromises.length > 0) {
|
|
Promise.all(artifactPromises).catch((artifactError) => {
|
|
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
|
|
});
|
|
}
|
|
} else {
|
|
// For non-streaming, wait for artifacts before sending response
|
|
if (artifactPromises.length > 0) {
|
|
try {
|
|
await Promise.all(artifactPromises);
|
|
} catch (artifactError) {
|
|
logger.warn('[OpenAI API] Error processing artifacts:', artifactError);
|
|
}
|
|
}
|
|
|
|
// Build usage from aggregated data
|
|
const usage = {
|
|
prompt_tokens: aggregator.usage.promptTokens,
|
|
completion_tokens: aggregator.usage.completionTokens,
|
|
total_tokens: aggregator.usage.promptTokens + aggregator.usage.completionTokens,
|
|
};
|
|
|
|
if (aggregator.usage.reasoningTokens > 0) {
|
|
usage.completion_tokens_details = {
|
|
reasoning_tokens: aggregator.usage.reasoningTokens,
|
|
};
|
|
}
|
|
|
|
const response = buildNonStreamingResponse(
|
|
context,
|
|
aggregator.getText(),
|
|
aggregator.getReasoning(),
|
|
aggregator.toolCalls,
|
|
usage,
|
|
);
|
|
res.json(response);
|
|
logger.debug(`[OpenAI API] Request ${requestId} completed in ${duration}ms (non-streaming)`);
|
|
}
|
|
} catch (error) {
|
|
const errorMessage = error instanceof Error ? error.message : 'An error occurred';
|
|
logger.error('[OpenAI API] Error:', error);
|
|
|
|
// Check if we already started streaming (headers sent)
|
|
if (res.headersSent) {
|
|
// Headers already sent, send error in stream
|
|
const errorChunk = createChunk(context, { content: `\n\nError: ${errorMessage}` }, 'stop');
|
|
writeSSE(res, errorChunk);
|
|
writeSSE(res, '[DONE]');
|
|
res.end();
|
|
} else {
|
|
sendErrorResponse(res, 500, errorMessage, 'server_error');
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* List available agents as models (filtered by remote access permissions)
|
|
*
|
|
* GET /v1/models
|
|
*/
|
|
const ListModelsController = async (req, res) => {
|
|
try {
|
|
const userId = req.user?.id;
|
|
const userRole = req.user?.role;
|
|
|
|
if (!userId) {
|
|
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
|
|
}
|
|
|
|
// Find agents the user has remote access to (VIEW permission on REMOTE_AGENT)
|
|
const accessibleAgentIds = await findAccessibleResources({
|
|
userId,
|
|
role: userRole,
|
|
resourceType: ResourceType.REMOTE_AGENT,
|
|
requiredPermissions: PermissionBits.VIEW,
|
|
});
|
|
|
|
// Get the accessible agents
|
|
let agents = [];
|
|
if (accessibleAgentIds.length > 0) {
|
|
agents = await getAgents({ _id: { $in: accessibleAgentIds } });
|
|
}
|
|
|
|
const models = agents.map((agent) => ({
|
|
id: agent.id,
|
|
object: 'model',
|
|
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
|
|
owned_by: 'librechat',
|
|
permission: [],
|
|
root: agent.id,
|
|
parent: null,
|
|
// LibreChat extensions
|
|
name: agent.name,
|
|
description: agent.description,
|
|
provider: agent.provider,
|
|
}));
|
|
|
|
res.json({
|
|
object: 'list',
|
|
data: models,
|
|
});
|
|
} catch (error) {
|
|
const errorMessage = error instanceof Error ? error.message : 'Failed to list models';
|
|
logger.error('[OpenAI API] Error listing models:', error);
|
|
sendErrorResponse(res, 500, errorMessage, 'server_error');
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Get a specific model/agent (with remote access permission check)
|
|
*
|
|
* GET /v1/models/:model
|
|
*/
|
|
const GetModelController = async (req, res) => {
|
|
try {
|
|
const { model } = req.params;
|
|
const userId = req.user?.id;
|
|
const userRole = req.user?.role;
|
|
|
|
if (!userId) {
|
|
return sendErrorResponse(res, 401, 'Authentication required', 'auth_error');
|
|
}
|
|
|
|
const agent = await getAgent({ id: model });
|
|
|
|
if (!agent) {
|
|
return sendErrorResponse(
|
|
res,
|
|
404,
|
|
`Model not found: ${model}`,
|
|
'invalid_request_error',
|
|
'model_not_found',
|
|
);
|
|
}
|
|
|
|
// Check if user has remote access to this agent
|
|
const accessibleAgentIds = await findAccessibleResources({
|
|
userId,
|
|
role: userRole,
|
|
resourceType: ResourceType.REMOTE_AGENT,
|
|
requiredPermissions: PermissionBits.VIEW,
|
|
});
|
|
|
|
const hasAccess = accessibleAgentIds.some((id) => id.toString() === agent._id.toString());
|
|
|
|
if (!hasAccess) {
|
|
return sendErrorResponse(
|
|
res,
|
|
403,
|
|
`No remote access to model: ${model}`,
|
|
'permission_error',
|
|
'access_denied',
|
|
);
|
|
}
|
|
|
|
res.json({
|
|
id: agent.id,
|
|
object: 'model',
|
|
created: Math.floor(new Date(agent.createdAt || Date.now()).getTime() / 1000),
|
|
owned_by: 'librechat',
|
|
permission: [],
|
|
root: agent.id,
|
|
parent: null,
|
|
// LibreChat extensions
|
|
name: agent.name,
|
|
description: agent.description,
|
|
provider: agent.provider,
|
|
});
|
|
} catch (error) {
|
|
const errorMessage = error instanceof Error ? error.message : 'Failed to get model';
|
|
logger.error('[OpenAI API] Error getting model:', error);
|
|
sendErrorResponse(res, 500, errorMessage, 'server_error');
|
|
}
|
|
};
|
|
|
|
module.exports = {
|
|
OpenAIChatCompletionController,
|
|
ListModelsController,
|
|
GetModelController,
|
|
};
|