LibreChat/api/app/clients/OpenAIClient.js
Danny Avila 583e978a82
feat(Google): Support all Text/Chat Models, Response streaming, PaLM -> Google 🤖 (#1316)
* feat: update PaLM icons

* feat: add additional google models

* POC: formatting inputs for Vertex AI streaming

* refactor: move endpoints services outside of /routes dir to /services/Endpoints

* refactor: shorten schemas import

* refactor: rename PALM to GOOGLE

* feat: make Google editable endpoint

* feat: reusable Ask and Edit controllers based off Anthropic

* chore: organize imports/logic

* fix(parseConvo): include examples in googleSchema

* fix: google only allows odd number of messages to be sent

* fix: pass proxy to AnthropicClient

* refactor: change `google` altName to `Google`

* refactor: update getModelMaxTokens and related functions to handle maxTokensMap with nested endpoint model key/values

* refactor: google Icon and response sender changes (Codey and Google logo instead of PaLM in all cases)

* feat: google support for maxTokensMap

* feat: google updated endpoints with Ask/Edit controllers, buildOptions, and initializeClient

* feat(GoogleClient): now builds prompt for text models and supports real streaming from Vertex AI through langchain

* chore(GoogleClient): remove comments, left before for reference in git history

* docs: update google instructions (WIP)

* docs(apis_and_tokens.md): add images to google instructions

* docs: remove typo apis_and_tokens.md

* Update apis_and_tokens.md

* feat(Google): use default settings map, fully support context for both text and chat models, fully support examples for chat models

* chore: update more PaLM references to Google

* chore: move playwright out of workflows to avoid failing tests
2023-12-10 14:54:13 -05:00

873 lines
27 KiB
JavaScript

const OpenAI = require('openai');
const { HttpsProxyAgent } = require('https-proxy-agent');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const { getResponseSender, EModelEndpoint } = require('~/server/services/Endpoints');
const { encodeAndFormat, validateVisionModel } = require('~/server/services/Files/images');
const { getModelMaxTokens, genAzureChatCompletion, extractBaseURL } = require('~/utils');
const { truncateText, formatMessage, CUT_OFF_PROMPT } = require('./prompts');
const { handleOpenAIErrors } = require('./tools/util');
const spendTokens = require('~/models/spendTokens');
const { createLLM, RunManager } = require('./llm');
const { isEnabled } = require('~/server/utils');
const ChatGPTClient = require('./ChatGPTClient');
const { summaryBuffer } = require('./memory');
const { runTitleChain } = require('./chains');
const { tokenSplit } = require('./document');
const BaseClient = require('./BaseClient');
// Cache to store Tiktoken instances
const tokenizersCache = {};
// Counter for keeping track of the number of tokenizer calls
let tokenizerCallsCount = 0;
class OpenAIClient extends BaseClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.ChatGPTClient = new ChatGPTClient();
this.buildPrompt = this.ChatGPTClient.buildPrompt.bind(this);
this.getCompletion = this.ChatGPTClient.getCompletion.bind(this);
this.contextStrategy = options.contextStrategy
? options.contextStrategy.toLowerCase()
: 'discard';
this.shouldSummarize = this.contextStrategy === 'summarize';
this.azure = options.azure || false;
this.setOptions(options);
}
// TODO: PluginsClient calls this 3x, unneeded
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
if (this.options.openaiApiKey) {
this.apiKey = this.options.openaiApiKey;
}
const modelOptions = this.options.modelOptions || {};
if (!this.modelOptions) {
this.modelOptions = {
...modelOptions,
model: modelOptions.model || 'gpt-3.5-turbo',
temperature:
typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
presence_penalty:
typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
stop: modelOptions.stop,
};
} else {
// Update the modelOptions if it already exists
this.modelOptions = {
...this.modelOptions,
...modelOptions,
};
}
if (this.options.attachments && !validateVisionModel(this.modelOptions.model)) {
this.modelOptions.model = 'gpt-4-vision-preview';
}
if (validateVisionModel(this.modelOptions.model)) {
delete this.modelOptions.stop;
}
const { OPENROUTER_API_KEY, OPENAI_FORCE_PROMPT } = process.env ?? {};
if (OPENROUTER_API_KEY && !this.azure) {
this.apiKey = OPENROUTER_API_KEY;
this.useOpenRouter = true;
}
const { reverseProxyUrl: reverseProxy } = this.options;
this.FORCE_PROMPT =
isEnabled(OPENAI_FORCE_PROMPT) ||
(reverseProxy && reverseProxy.includes('completions') && !reverseProxy.includes('chat'));
if (this.azure && process.env.AZURE_OPENAI_DEFAULT_MODEL) {
this.azureEndpoint = genAzureChatCompletion(this.azure, this.modelOptions.model);
this.modelOptions.model = process.env.AZURE_OPENAI_DEFAULT_MODEL;
} else if (this.azure) {
this.azureEndpoint = genAzureChatCompletion(this.azure, this.modelOptions.model);
}
const { model } = this.modelOptions;
this.isChatCompletion = this.useOpenRouter || !!reverseProxy || model.includes('gpt-');
this.isChatGptModel = this.isChatCompletion;
if (
model.includes('text-davinci') ||
model.includes('gpt-3.5-turbo-instruct') ||
this.FORCE_PROMPT
) {
this.isChatCompletion = false;
this.isChatGptModel = false;
}
const { isChatGptModel } = this;
this.isUnofficialChatGptModel =
model.startsWith('text-chat') || model.startsWith('text-davinci-002-render');
this.maxContextTokens = getModelMaxTokens(model) ?? 4095; // 1 less than maximum
if (this.shouldSummarize) {
this.maxContextTokens = Math.floor(this.maxContextTokens / 2);
}
if (this.options.debug) {
console.debug('maxContextTokens', this.maxContextTokens);
}
this.maxResponseTokens = this.modelOptions.max_tokens || 1024;
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
);
}
this.sender =
this.options.sender ??
getResponseSender({
model: this.modelOptions.model,
endpoint: EModelEndpoint.openAI,
chatGptLabel: this.options.chatGptLabel,
});
this.userLabel = this.options.userLabel || 'User';
this.chatGptLabel = this.options.chatGptLabel || 'Assistant';
this.setupTokens();
if (!this.modelOptions.stop && !validateVisionModel(this.modelOptions.model)) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`\n${this.userLabel}:`);
stopTokens.push('<|diff_marker|>');
this.modelOptions.stop = stopTokens;
}
if (reverseProxy) {
this.completionsUrl = reverseProxy;
this.langchainProxy = extractBaseURL(reverseProxy);
} else if (isChatGptModel) {
this.completionsUrl = 'https://api.openai.com/v1/chat/completions';
} else {
this.completionsUrl = 'https://api.openai.com/v1/completions';
}
if (this.azureEndpoint) {
this.completionsUrl = this.azureEndpoint;
}
if (this.azureEndpoint && this.options.debug) {
console.debug('Using Azure endpoint');
}
if (this.useOpenRouter) {
this.completionsUrl = 'https://openrouter.ai/api/v1/chat/completions';
}
return this;
}
setupTokens() {
if (this.isChatCompletion) {
this.startToken = '||>';
this.endToken = '';
} else if (this.isUnofficialChatGptModel) {
this.startToken = '<|im_start|>';
this.endToken = '<|im_end|>';
} else {
this.startToken = '||>';
this.endToken = '';
}
}
// Selects an appropriate tokenizer based on the current configuration of the client instance.
// It takes into account factors such as whether it's a chat completion, an unofficial chat GPT model, etc.
selectTokenizer() {
let tokenizer;
this.encoding = 'text-davinci-003';
if (this.isChatCompletion) {
this.encoding = 'cl100k_base';
tokenizer = this.constructor.getTokenizer(this.encoding);
} else if (this.isUnofficialChatGptModel) {
const extendSpecialTokens = {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
};
tokenizer = this.constructor.getTokenizer(this.encoding, true, extendSpecialTokens);
} else {
try {
const { model } = this.modelOptions;
this.encoding = model.includes('instruct') ? 'text-davinci-003' : model;
tokenizer = this.constructor.getTokenizer(this.encoding, true);
} catch {
tokenizer = this.constructor.getTokenizer('text-davinci-003', true);
}
}
return tokenizer;
}
// Retrieves a tokenizer either from the cache or creates a new one if one doesn't exist in the cache.
// If a tokenizer is being created, it's also added to the cache.
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
let tokenizer;
if (tokenizersCache[encoding]) {
tokenizer = tokenizersCache[encoding];
} else {
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
}
return tokenizer;
}
// Frees all encoders in the cache and resets the count.
static freeAndResetAllEncoders() {
try {
Object.keys(tokenizersCache).forEach((key) => {
if (tokenizersCache[key]) {
tokenizersCache[key].free();
delete tokenizersCache[key];
}
});
// Reset count
tokenizerCallsCount = 1;
} catch (error) {
console.log('Free and reset encoders error');
console.error(error);
}
}
// Checks if the cache of tokenizers has reached a certain size. If it has, it frees and resets all tokenizers.
resetTokenizersIfNecessary() {
if (tokenizerCallsCount >= 25) {
if (this.options.debug) {
console.debug('freeAndResetAllEncoders: reached 25 encodings, resetting...');
}
this.constructor.freeAndResetAllEncoders();
}
tokenizerCallsCount++;
}
// Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
getTokenCount(text) {
this.resetTokenizersIfNecessary();
try {
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
} catch (error) {
this.constructor.freeAndResetAllEncoders();
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
}
}
getSaveOptions() {
return {
chatGptLabel: this.options.chatGptLabel,
promptPrefix: this.options.promptPrefix,
...this.modelOptions,
};
}
getBuildMessagesOptions(opts) {
return {
isChatCompletion: this.isChatCompletion,
promptPrefix: opts.promptPrefix,
abortController: opts.abortController,
};
}
async buildMessages(
messages,
parentMessageId,
{ isChatCompletion = false, promptPrefix = null },
opts,
) {
let orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
summary: this.shouldSummarize,
});
if (!isChatCompletion) {
return await this.buildPrompt(orderedMessages, {
isChatGptModel: isChatCompletion,
promptPrefix,
});
}
let payload;
let instructions;
let tokenCountMap;
let promptTokens;
promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim();
if (promptPrefix) {
promptPrefix = `Instructions:\n${promptPrefix}`;
instructions = {
role: 'system',
name: 'instructions',
content: promptPrefix,
};
if (this.contextStrategy) {
instructions.tokenCount = this.getTokenCountForMessage(instructions);
}
}
if (this.options.attachments) {
const attachments = await this.options.attachments;
const { files, image_urls } = await encodeAndFormat(
this.options.req,
attachments.filter((file) => file.type.includes('image')),
);
orderedMessages[orderedMessages.length - 1].image_urls = image_urls;
this.options.attachments = files;
}
const formattedMessages = orderedMessages.map((message, i) => {
const formattedMessage = formatMessage({
message,
userName: this.options?.name,
assistantName: this.options?.chatGptLabel,
});
if (this.contextStrategy && !orderedMessages[i].tokenCount) {
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
}
return formattedMessage;
});
// TODO: need to handle interleaving instructions better
if (this.contextStrategy) {
({ payload, tokenCountMap, promptTokens, messages } = await this.handleContextStrategy({
instructions,
orderedMessages,
formattedMessages,
}));
}
const result = {
prompt: payload,
promptTokens,
messages,
};
if (tokenCountMap) {
tokenCountMap.instructions = instructions?.tokenCount;
result.tokenCountMap = tokenCountMap;
}
if (promptTokens >= 0 && typeof opts?.getReqData === 'function') {
opts.getReqData({ promptTokens });
}
return result;
}
async sendCompletion(payload, opts = {}) {
let reply = '';
let result = null;
let streamResult = null;
this.modelOptions.user = this.user;
const invalidBaseUrl = this.completionsUrl && extractBaseURL(this.completionsUrl) === null;
const useOldMethod = !!(this.azure || invalidBaseUrl || !this.isChatCompletion);
if (typeof opts.onProgress === 'function' && useOldMethod) {
await this.getCompletion(
payload,
(progressMessage) => {
if (progressMessage === '[DONE]') {
return;
}
if (this.options.debug) {
// console.debug('progressMessage');
// console.dir(progressMessage, { depth: null });
}
if (progressMessage.choices) {
streamResult = progressMessage;
}
let token = null;
if (this.isChatCompletion) {
token =
progressMessage.choices?.[0]?.delta?.content ?? progressMessage.choices?.[0]?.text;
} else {
token = progressMessage.choices?.[0]?.text;
}
if (!token && this.useOpenRouter) {
token = progressMessage.choices?.[0]?.message?.content;
}
// first event's delta content is always undefined
if (!token) {
return;
}
if (this.options.debug) {
// console.debug(token);
}
if (token === this.endToken) {
return;
}
opts.onProgress(token);
reply += token;
},
opts.abortController || new AbortController(),
);
} else if (typeof opts.onProgress === 'function') {
reply = await this.chatCompletion({
payload,
clientOptions: opts,
onProgress: opts.onProgress,
abortController: opts.abortController,
});
} else {
result = await this.getCompletion(
payload,
null,
opts.abortController || new AbortController(),
);
if (this.options.debug) {
console.debug(JSON.stringify(result));
}
if (this.isChatCompletion) {
reply = result.choices[0].message.content;
} else {
reply = result.choices[0].text.replace(this.endToken, '');
}
}
if (streamResult && typeof opts.addMetadata === 'function') {
const { finish_reason } = streamResult.choices[0];
opts.addMetadata({ finish_reason });
}
return reply.trim();
}
initializeLLM({
model = 'gpt-3.5-turbo',
modelName,
temperature = 0.2,
presence_penalty = 0,
frequency_penalty = 0,
max_tokens,
streaming,
context,
tokenBuffer,
initialMessageCount,
}) {
const modelOptions = {
modelName: modelName ?? model,
temperature,
presence_penalty,
frequency_penalty,
user: this.user,
};
if (max_tokens) {
modelOptions.max_tokens = max_tokens;
}
const configOptions = {};
if (this.langchainProxy) {
configOptions.basePath = this.langchainProxy;
}
if (this.useOpenRouter) {
configOptions.basePath = 'https://openrouter.ai/api/v1';
configOptions.baseOptions = {
headers: {
'HTTP-Referer': 'https://librechat.ai',
'X-Title': 'LibreChat',
},
};
}
if (this.options.proxy) {
configOptions.httpAgent = new HttpsProxyAgent(this.options.proxy);
configOptions.httpsAgent = new HttpsProxyAgent(this.options.proxy);
}
const { req, res, debug } = this.options;
const runManager = new RunManager({ req, res, debug, abortController: this.abortController });
this.runManager = runManager;
const llm = createLLM({
modelOptions,
configOptions,
openAIApiKey: this.apiKey,
azure: this.azure,
streaming,
callbacks: runManager.createCallbacks({
context,
tokenBuffer,
conversationId: this.conversationId,
initialMessageCount,
}),
});
return llm;
}
async titleConvo({ text, responseText = '' }) {
let title = 'New Chat';
const convo = `||>User:
"${truncateText(text)}"
||>Response:
"${JSON.stringify(truncateText(responseText))}"`;
const { OPENAI_TITLE_MODEL } = process.env ?? {};
const modelOptions = {
model: OPENAI_TITLE_MODEL ?? 'gpt-3.5-turbo',
temperature: 0.2,
presence_penalty: 0,
frequency_penalty: 0,
max_tokens: 16,
};
try {
this.abortController = new AbortController();
const llm = this.initializeLLM({ ...modelOptions, context: 'title', tokenBuffer: 150 });
title = await runTitleChain({ llm, text, convo, signal: this.abortController.signal });
} catch (e) {
if (e?.message?.toLowerCase()?.includes('abort')) {
this.options.debug && console.debug('Aborted title generation');
return;
}
console.log('There was an issue generating title with LangChain, trying the old method...');
this.options.debug && console.error(e.message, e);
modelOptions.model = OPENAI_TITLE_MODEL ?? 'gpt-3.5-turbo';
if (this.azure) {
modelOptions.model = process.env.AZURE_OPENAI_DEFAULT_MODEL ?? modelOptions.model;
this.azureEndpoint = genAzureChatCompletion(this.azure, modelOptions.model);
}
const instructionsPayload = [
{
role: 'system',
content: `Detect user language and write in the same language an extremely concise title for this conversation, which you must accurately detect.
Write in the detected language. Title in 5 Words or Less. No Punctuation or Quotation. Do not mention the language. All first letters of every word should be capitalized and write the title in User Language only.
${convo}
||>Title:`,
},
];
try {
title = (await this.sendPayload(instructionsPayload, { modelOptions })).replaceAll('"', '');
} catch (e) {
console.error(e);
console.log('There was another issue generating the title, see error above.');
}
}
console.log('CONVERSATION TITLE', title);
return title;
}
async summarizeMessages({ messagesToRefine, remainingContextTokens }) {
this.options.debug && console.debug('Summarizing messages...');
let context = messagesToRefine;
let prompt;
const { OPENAI_SUMMARY_MODEL = 'gpt-3.5-turbo' } = process.env ?? {};
const maxContextTokens = getModelMaxTokens(OPENAI_SUMMARY_MODEL) ?? 4095;
// 3 tokens for the assistant label, and 98 for the summarizer prompt (101)
let promptBuffer = 101;
/*
* Note: token counting here is to block summarization if it exceeds the spend; complete
* accuracy is not important. Actual spend will happen after successful summarization.
*/
const excessTokenCount = context.reduce(
(acc, message) => acc + message.tokenCount,
promptBuffer,
);
if (excessTokenCount > maxContextTokens) {
({ context } = await this.getMessagesWithinTokenLimit(context, maxContextTokens));
}
if (context.length === 0) {
this.options.debug &&
console.debug('Summary context is empty, using latest message within token limit');
promptBuffer = 32;
const { text, ...latestMessage } = messagesToRefine[messagesToRefine.length - 1];
const splitText = await tokenSplit({
text,
chunkSize: Math.floor((maxContextTokens - promptBuffer) / 3),
});
const newText = `${splitText[0]}\n...[truncated]...\n${splitText[splitText.length - 1]}`;
prompt = CUT_OFF_PROMPT;
context = [
formatMessage({
message: {
...latestMessage,
text: newText,
},
userName: this.options?.name,
assistantName: this.options?.chatGptLabel,
}),
];
}
// TODO: We can accurately count the tokens here before handleChatModelStart
// by recreating the summary prompt (single message) to avoid LangChain handling
const initialPromptTokens = this.maxContextTokens - remainingContextTokens;
this.options.debug && console.debug(`initialPromptTokens: ${initialPromptTokens}`);
const llm = this.initializeLLM({
model: OPENAI_SUMMARY_MODEL,
temperature: 0.2,
context: 'summary',
tokenBuffer: initialPromptTokens,
});
try {
const summaryMessage = await summaryBuffer({
llm,
debug: this.options.debug,
prompt,
context,
formatOptions: {
userName: this.options?.name,
assistantName: this.options?.chatGptLabel ?? this.options?.modelLabel,
},
previous_summary: this.previous_summary?.summary,
signal: this.abortController.signal,
});
const summaryTokenCount = this.getTokenCountForMessage(summaryMessage);
if (this.options.debug) {
console.debug('summaryMessage:', summaryMessage);
console.debug(
`remainingContextTokens: ${remainingContextTokens}, after refining: ${
remainingContextTokens - summaryTokenCount
}`,
);
}
return { summaryMessage, summaryTokenCount };
} catch (e) {
if (e?.message?.toLowerCase()?.includes('abort')) {
this.options.debug && console.debug('Aborted summarization');
const { run, runId } = this.runManager.getRunByConversationId(this.conversationId);
if (run && run.error) {
const { error } = run;
this.runManager.removeRun(runId);
throw new Error(error);
}
}
console.error('Error summarizing messages');
this.options.debug && console.error(e);
return {};
}
}
async recordTokenUsage({ promptTokens, completionTokens }) {
if (this.options.debug) {
console.debug('promptTokens', promptTokens);
console.debug('completionTokens', completionTokens);
}
await spendTokens(
{
user: this.user,
model: this.modelOptions.model,
context: 'message',
conversationId: this.conversationId,
},
{ promptTokens, completionTokens },
);
}
getTokenCountForResponse(response) {
return this.getTokenCountForMessage({
role: 'assistant',
content: response.text,
});
}
async chatCompletion({ payload, onProgress, clientOptions, abortController = null }) {
let error = null;
const errorCallback = (err) => (error = err);
let intermediateReply = '';
try {
if (!abortController) {
abortController = new AbortController();
}
const modelOptions = { ...this.modelOptions };
if (typeof onProgress === 'function') {
modelOptions.stream = true;
}
if (this.isChatCompletion) {
modelOptions.messages = payload;
} else {
// TODO: unreachable code. Need to implement completions call for non-chat models
modelOptions.prompt = payload;
}
const { debug } = this.options;
const url = extractBaseURL(this.completionsUrl);
if (debug) {
console.debug('baseURL', url);
console.debug('modelOptions', modelOptions);
}
const opts = {
baseURL: url,
};
if (this.useOpenRouter) {
opts.defaultHeaders = {
'HTTP-Referer': 'https://librechat.ai',
'X-Title': 'LibreChat',
};
}
if (this.options.headers) {
opts.defaultHeaders = { ...opts.defaultHeaders, ...this.options.headers };
}
if (this.options.proxy) {
opts.httpAgent = new HttpsProxyAgent(this.options.proxy);
}
if (validateVisionModel(modelOptions.model)) {
modelOptions.max_tokens = 4000;
}
let chatCompletion;
const openai = new OpenAI({
apiKey: this.apiKey,
...opts,
});
let UnexpectedRoleError = false;
if (modelOptions.stream) {
const stream = await openai.beta.chat.completions
.stream({
...modelOptions,
stream: true,
})
.on('abort', () => {
/* Do nothing here */
})
.on('error', (err) => {
handleOpenAIErrors(err, errorCallback, 'stream');
})
.on('finalMessage', (message) => {
if (message?.role !== 'assistant') {
stream.messages.push({ role: 'assistant', content: intermediateReply });
UnexpectedRoleError = true;
}
});
for await (const chunk of stream) {
const token = chunk.choices[0]?.delta?.content || '';
intermediateReply += token;
onProgress(token);
if (abortController.signal.aborted) {
stream.controller.abort();
break;
}
}
if (!UnexpectedRoleError) {
chatCompletion = await stream.finalChatCompletion().catch((err) => {
handleOpenAIErrors(err, errorCallback, 'finalChatCompletion');
});
}
}
// regular completion
else {
chatCompletion = await openai.chat.completions
.create({
...modelOptions,
})
.catch((err) => {
handleOpenAIErrors(err, errorCallback, 'create');
});
}
if (!chatCompletion && UnexpectedRoleError) {
throw new Error(
'OpenAIError: Invalid final message: OpenAI expects final message to include role=assistant',
);
} else if (!chatCompletion && error) {
throw new Error(error);
} else if (!chatCompletion) {
throw new Error('Chat completion failed');
}
const { message, finish_reason } = chatCompletion.choices[0];
if (chatCompletion && typeof clientOptions.addMetadata === 'function') {
clientOptions.addMetadata({ finish_reason });
}
return message.content;
} catch (err) {
if (
err?.message?.includes('abort') ||
(err instanceof OpenAI.APIError && err?.message?.includes('abort'))
) {
return '';
}
if (
err?.message?.includes(
'OpenAIError: Invalid final message: OpenAI expects final message to include role=assistant',
) ||
err?.message?.includes('The server had an error processing your request') ||
err?.message?.includes('missing finish_reason') ||
(err instanceof OpenAI.OpenAIError && err?.message?.includes('missing finish_reason'))
) {
console.error(err);
await abortController.abortCompletion();
return intermediateReply;
} else if (err instanceof OpenAI.APIError) {
console.log(err.name);
console.log(err.status);
console.log(err.headers);
if (intermediateReply) {
return intermediateReply;
} else {
throw err;
}
} else {
console.warn('[OpenAIClient.chatCompletion] Unhandled error type');
console.error(err);
throw err;
}
}
}
}
module.exports = OpenAIClient;