LibreChat/packages/data-provider/src/schemas.ts
Ruben Talstra 4cbab86b45
📈 feat: Chat rating for feedback (#5878)
* feat: working started for feedback implementation.

TODO:
- needs some refactoring.
- needs some UI animations.

* feat: working rate functionality

* feat: works now as well to reader the already rated responses from the server.

* feat: added the option to give feedback in text (optional)

* feat: added Dismiss option `x` to the `FeedbackTagOptions`

*  feat: Add rating and ratingContent fields to message schema

* 🔧 chore: Bump version to 0.0.3 in package.json

*  feat: Enhance feedback localization and update UI elements

* 🚀 feat: Implement feedback tagging system with thumbs up/down options

* 🚀 feat: Add data-provider package to unused i18n keys detection

* 🎨 style: update HoverButtons' style

* 🎨 style: Update HoverButtons and Fork components for improved styling and visibility

* 🔧 feat: Implement feedback system with rating and content options

* 🔧 feat: Enhance feedback handling with improved rating toggle and tag options

* 🔧 feat: Integrate toast notifications for feedback submission and clean up unused state

* 🔧 feat: Remove unused feedback tag options from translation file

*  refactor: clean up Feedback component and improve HoverButtons structure

*  refactor: remove unused settings switches for auto scroll, hide side panel, and user message markdown

* refactor: reorganize import order

*  refactor: enhance HoverButtons and Fork components with improved styles and animations

*  refactor: update feedback response phrases for improved user engagement

*  refactor: add CheckboxOption component and streamline fork options rendering

* Refactor feedback components and logic

- Consolidated feedback handling into a single Feedback component, removing FeedbackButtons and FeedbackTagOptions.
- Introduced new feedback tagging system with detailed tags for both thumbs up and thumbs down ratings.
- Updated feedback schema to include new tags and improved type definitions.
- Enhanced user interface for feedback collection, including a dialog for additional comments.
- Removed obsolete files and adjusted imports accordingly.
- Updated translations for new feedback tags and placeholders.

*  refactor: update feedback handling by replacing rating fields with feedback in message updates

* fix: add missing validateMessageReq middleware to feedback route and refactor feedback system

* 🗑️ chore: Remove redundant fork option explanations from translation file

* 🔧 refactor: Remove unused dependency from feedback callback

* 🔧 refactor: Simplify message update response structure and improve error logging

* Chore: removed unused tests.

---------

Co-authored-by: Marco Beretta <81851188+berry-13@users.noreply.github.com>
2025-05-30 12:16:34 -04:00

1150 lines
30 KiB
TypeScript

import { z } from 'zod';
import { Tools } from './types/assistants';
import type { TMessageContentParts, FunctionTool, FunctionToolCall } from './types/assistants';
import { TFeedback, feedbackSchema } from './feedback';
import type { SearchResultData } from './types/web';
import type { TEphemeralAgent } from './types';
import type { TFile } from './types/files';
export const isUUID = z.string().uuid();
export enum AuthType {
OVERRIDE_AUTH = 'override_auth',
USER_PROVIDED = 'user_provided',
SYSTEM_DEFINED = 'system_defined',
}
export const authTypeSchema = z.nativeEnum(AuthType);
export enum EModelEndpoint {
azureOpenAI = 'azureOpenAI',
openAI = 'openAI',
google = 'google',
anthropic = 'anthropic',
assistants = 'assistants',
azureAssistants = 'azureAssistants',
agents = 'agents',
custom = 'custom',
bedrock = 'bedrock',
/** @deprecated */
chatGPTBrowser = 'chatGPTBrowser',
/** @deprecated */
gptPlugins = 'gptPlugins',
}
export const paramEndpoints = new Set<EModelEndpoint | string>([
EModelEndpoint.agents,
EModelEndpoint.openAI,
EModelEndpoint.bedrock,
EModelEndpoint.azureOpenAI,
EModelEndpoint.anthropic,
EModelEndpoint.custom,
EModelEndpoint.google,
]);
export enum BedrockProviders {
AI21 = 'ai21',
Amazon = 'amazon',
Anthropic = 'anthropic',
Cohere = 'cohere',
Meta = 'meta',
MistralAI = 'mistral',
StabilityAI = 'stability',
DeepSeek = 'deepseek',
}
export const getModelKey = (endpoint: EModelEndpoint | string, model: string) => {
if (endpoint === EModelEndpoint.bedrock) {
const parts = model.split('.');
const provider = [parts[0], parts[1]].find((part) =>
Object.values(BedrockProviders).includes(part as BedrockProviders),
);
return (provider ?? parts[0]) as BedrockProviders;
}
return model;
};
export const getSettingsKeys = (endpoint: EModelEndpoint | string, model: string) => {
const endpointKey = endpoint;
const modelKey = getModelKey(endpointKey, model);
const combinedKey = `${endpointKey}-${modelKey}`;
return [combinedKey, endpointKey];
};
export type AssistantsEndpoint = EModelEndpoint.assistants | EModelEndpoint.azureAssistants;
export const isAssistantsEndpoint = (_endpoint?: AssistantsEndpoint | null | string): boolean => {
const endpoint = _endpoint ?? '';
if (!endpoint) {
return false;
}
return endpoint.toLowerCase().endsWith(EModelEndpoint.assistants);
};
export type AgentProvider = Exclude<keyof typeof EModelEndpoint, EModelEndpoint.agents> | string;
export const isAgentsEndpoint = (_endpoint?: EModelEndpoint.agents | null | string): boolean => {
const endpoint = _endpoint ?? '';
if (!endpoint) {
return false;
}
return endpoint === EModelEndpoint.agents;
};
export const isEphemeralAgent = (
endpoint?: EModelEndpoint.agents | null | string,
ephemeralAgent?: TEphemeralAgent | null,
) => {
if (!ephemeralAgent) {
return false;
}
if (isAgentsEndpoint(endpoint)) {
return false;
}
const hasMCPSelected = (ephemeralAgent?.mcp?.length ?? 0) > 0;
const hasCodeSelected = (ephemeralAgent?.execute_code ?? false) === true;
const hasSearchSelected = (ephemeralAgent?.web_search ?? false) === true;
return hasMCPSelected || hasCodeSelected || hasSearchSelected;
};
export const isParamEndpoint = (
endpoint: EModelEndpoint | string,
endpointType?: EModelEndpoint | string,
): boolean => {
if (paramEndpoints.has(endpoint)) {
return true;
}
if (endpointType != null) {
return paramEndpoints.has(endpointType);
}
return false;
};
export enum ImageDetail {
low = 'low',
auto = 'auto',
high = 'high',
}
export enum ReasoningEffort {
low = 'low',
medium = 'medium',
high = 'high',
}
export const imageDetailNumeric = {
[ImageDetail.low]: 0,
[ImageDetail.auto]: 1,
[ImageDetail.high]: 2,
};
export const imageDetailValue = {
0: ImageDetail.low,
1: ImageDetail.auto,
2: ImageDetail.high,
};
export const eImageDetailSchema = z.nativeEnum(ImageDetail);
export const eReasoningEffortSchema = z.nativeEnum(ReasoningEffort);
export const defaultAssistantFormValues = {
assistant: '',
id: '',
name: '',
description: '',
instructions: '',
conversation_starters: [],
model: '',
functions: [],
code_interpreter: false,
image_vision: false,
retrieval: false,
append_current_datetime: false,
};
export const defaultAgentFormValues = {
agent: {},
id: '',
name: '',
description: '',
instructions: '',
model: '',
model_parameters: {},
tools: [],
provider: {},
projectIds: [],
artifacts: '',
isCollaborative: false,
recursion_limit: undefined,
[Tools.execute_code]: false,
[Tools.file_search]: false,
[Tools.web_search]: false,
};
export const ImageVisionTool: FunctionTool = {
type: Tools.function,
[Tools.function]: {
name: 'image_vision',
description: 'Get detailed text descriptions for all current image attachments.',
parameters: {
type: 'object',
properties: {},
required: [],
},
},
};
export const isImageVisionTool = (tool: FunctionTool | FunctionToolCall) =>
tool.type === 'function' && tool.function?.name === ImageVisionTool.function?.name;
export const openAISettings = {
model: {
default: 'gpt-4o-mini' as const,
},
temperature: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 1 as const,
},
top_p: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 1 as const,
},
presence_penalty: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 0 as const,
},
frequency_penalty: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 0 as const,
},
resendFiles: {
default: true as const,
},
maxContextTokens: {
default: undefined,
},
max_tokens: {
default: undefined,
},
imageDetail: {
default: ImageDetail.auto as const,
min: 0 as const,
max: 2 as const,
step: 1 as const,
},
};
export const googleSettings = {
model: {
default: 'gemini-1.5-flash-latest' as const,
},
maxOutputTokens: {
min: 1 as const,
max: 64000 as const,
step: 1 as const,
default: 8192 as const,
},
temperature: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 1 as const,
},
topP: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 0.95 as const,
},
topK: {
min: 1 as const,
max: 40 as const,
step: 1 as const,
default: 40 as const,
},
};
const ANTHROPIC_MAX_OUTPUT = 128000 as const;
const DEFAULT_MAX_OUTPUT = 8192 as const;
const LEGACY_ANTHROPIC_MAX_OUTPUT = 4096 as const;
export const anthropicSettings = {
model: {
default: 'claude-3-5-sonnet-latest' as const,
},
temperature: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 1 as const,
},
promptCache: {
default: true as const,
},
thinking: {
default: true as const,
},
thinkingBudget: {
min: 1024 as const,
step: 100 as const,
max: 200000 as const,
default: 2000 as const,
},
maxOutputTokens: {
min: 1 as const,
max: ANTHROPIC_MAX_OUTPUT,
step: 1 as const,
default: DEFAULT_MAX_OUTPUT,
reset: (modelName: string) => {
if (/claude-3[-.]5-sonnet/.test(modelName) || /claude-3[-.]7/.test(modelName)) {
return DEFAULT_MAX_OUTPUT;
}
return 4096;
},
set: (value: number, modelName: string) => {
if (
!(/claude-3[-.]5-sonnet/.test(modelName) || /claude-3[-.]7/.test(modelName)) &&
value > LEGACY_ANTHROPIC_MAX_OUTPUT
) {
return LEGACY_ANTHROPIC_MAX_OUTPUT;
}
return value;
},
},
topP: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 0.7 as const,
},
topK: {
min: 1 as const,
max: 40 as const,
step: 1 as const,
default: 5 as const,
},
resendFiles: {
default: true as const,
},
maxContextTokens: {
default: undefined,
},
legacy: {
maxOutputTokens: {
min: 1 as const,
max: LEGACY_ANTHROPIC_MAX_OUTPUT,
step: 1 as const,
default: LEGACY_ANTHROPIC_MAX_OUTPUT,
},
},
};
export const agentsSettings = {
model: {
default: 'gpt-3.5-turbo-test' as const,
},
temperature: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 1 as const,
},
top_p: {
min: 0 as const,
max: 1 as const,
step: 0.01 as const,
default: 1 as const,
},
presence_penalty: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 0 as const,
},
frequency_penalty: {
min: 0 as const,
max: 2 as const,
step: 0.01 as const,
default: 0 as const,
},
resendFiles: {
default: true as const,
},
maxContextTokens: {
default: undefined,
},
max_tokens: {
default: undefined,
},
imageDetail: {
default: ImageDetail.auto as const,
},
};
export const endpointSettings = {
[EModelEndpoint.openAI]: openAISettings,
[EModelEndpoint.google]: googleSettings,
[EModelEndpoint.anthropic]: anthropicSettings,
[EModelEndpoint.agents]: agentsSettings,
[EModelEndpoint.bedrock]: agentsSettings,
};
const google = endpointSettings[EModelEndpoint.google];
export const eModelEndpointSchema = z.nativeEnum(EModelEndpoint);
export const extendedModelEndpointSchema = z.union([eModelEndpointSchema, z.string()]);
export const tPluginAuthConfigSchema = z.object({
authField: z.string(),
label: z.string(),
description: z.string(),
});
export type TPluginAuthConfig = z.infer<typeof tPluginAuthConfigSchema>;
export const tPluginSchema = z.object({
name: z.string(),
pluginKey: z.string(),
description: z.string(),
icon: z.string().optional(),
authConfig: z.array(tPluginAuthConfigSchema).optional(),
authenticated: z.boolean().optional(),
chatMenu: z.boolean().optional(),
isButton: z.boolean().optional(),
toolkit: z.boolean().optional(),
});
export type TPlugin = z.infer<typeof tPluginSchema>;
export type TInput = {
inputStr: string;
};
export type TResPlugin = {
plugin: string;
input: string;
thought: string;
loading?: boolean;
outputs?: string;
latest?: string;
inputs?: TInput[];
};
export const tExampleSchema = z.object({
input: z.object({
content: z.string(),
}),
output: z.object({
content: z.string(),
}),
});
export type TExample = z.infer<typeof tExampleSchema>;
export enum EAgent {
functions = 'functions',
classic = 'classic',
}
export const agentOptionSettings = {
model: {
default: 'gpt-4o-mini',
},
temperature: {
min: 0,
max: 1,
step: 0.01,
default: 0,
},
agent: {
default: EAgent.functions,
options: [EAgent.functions, EAgent.classic],
},
skipCompletion: {
default: true,
},
};
export const eAgentOptionsSchema = z.nativeEnum(EAgent);
export const tAgentOptionsSchema = z.object({
agent: z.string().default(EAgent.functions),
skipCompletion: z.boolean().default(agentOptionSettings.skipCompletion.default),
model: z.string(),
temperature: z.number().default(agentOptionSettings.temperature.default),
});
export const tMessageSchema = z.object({
messageId: z.string(),
endpoint: z.string().optional(),
clientId: z.string().nullable().optional(),
conversationId: z.string().nullable(),
parentMessageId: z.string().nullable(),
responseMessageId: z.string().nullable().optional(),
overrideParentMessageId: z.string().nullable().optional(),
bg: z.string().nullable().optional(),
model: z.string().nullable().optional(),
title: z.string().nullable().or(z.literal('New Chat')).default('New Chat'),
sender: z.string().optional(),
text: z.string(),
generation: z.string().nullable().optional(),
isCreatedByUser: z.boolean(),
error: z.boolean().optional(),
clientTimestamp: z.string().optional(),
createdAt: z
.string()
.optional()
.default(() => new Date().toISOString()),
updatedAt: z
.string()
.optional()
.default(() => new Date().toISOString()),
current: z.boolean().optional(),
unfinished: z.boolean().optional(),
searchResult: z.boolean().optional(),
finish_reason: z.string().optional(),
/* assistant */
thread_id: z.string().optional(),
/* frontend components */
iconURL: z.string().nullable().optional(),
feedback: feedbackSchema.optional(),
});
export type TAttachmentMetadata = {
type?: Tools;
messageId: string;
toolCallId: string;
[Tools.web_search]?: SearchResultData;
};
export type TAttachment =
| (TFile & TAttachmentMetadata)
| (Pick<TFile, 'filename' | 'filepath' | 'conversationId'> & {
expiresAt: number;
} & TAttachmentMetadata);
export type TMessage = z.input<typeof tMessageSchema> & {
children?: TMessage[];
plugin?: TResPlugin | null;
plugins?: TResPlugin[];
content?: TMessageContentParts[];
files?: Partial<TFile>[];
depth?: number;
siblingIndex?: number;
attachments?: TAttachment[];
clientTimestamp?: string;
feedback?: TFeedback;
};
export const coerceNumber = z.union([z.number(), z.string()]).transform((val) => {
if (typeof val === 'string') {
return val.trim() === '' ? undefined : parseFloat(val);
}
return val;
});
type DocumentTypeValue =
| null
| boolean
| number
| string
| DocumentTypeValue[]
| { [key: string]: DocumentTypeValue };
const DocumentType: z.ZodType<DocumentTypeValue> = z.lazy(() =>
z.union([
z.null(),
z.boolean(),
z.number(),
z.string(),
z.array(z.lazy(() => DocumentType)),
z.record(z.lazy(() => DocumentType)),
]),
);
export const tConversationSchema = z.object({
conversationId: z.string().nullable(),
endpoint: eModelEndpointSchema.nullable(),
endpointType: eModelEndpointSchema.nullable().optional(),
isArchived: z.boolean().optional(),
title: z.string().nullable().or(z.literal('New Chat')).default('New Chat'),
user: z.string().optional(),
messages: z.array(z.string()).optional(),
tools: z.union([z.array(tPluginSchema), z.array(z.string())]).optional(),
modelLabel: z.string().nullable().optional(),
userLabel: z.string().optional(),
model: z.string().nullable().optional(),
promptPrefix: z.string().nullable().optional(),
temperature: z.number().optional(),
topP: z.number().optional(),
topK: z.number().optional(),
top_p: z.number().optional(),
frequency_penalty: z.number().optional(),
presence_penalty: z.number().optional(),
parentMessageId: z.string().optional(),
maxOutputTokens: coerceNumber.optional(),
maxContextTokens: coerceNumber.optional(),
max_tokens: coerceNumber.optional(),
/* Anthropic */
promptCache: z.boolean().optional(),
system: z.string().optional(),
thinking: z.boolean().optional(),
thinkingBudget: coerceNumber.optional(),
/* artifacts */
artifacts: z.string().optional(),
/* google */
context: z.string().nullable().optional(),
examples: z.array(tExampleSchema).optional(),
/* DB */
tags: z.array(z.string()).optional(),
createdAt: z.string(),
updatedAt: z.string(),
/* Files */
resendFiles: z.boolean().optional(),
file_ids: z.array(z.string()).optional(),
/* vision */
imageDetail: eImageDetailSchema.optional(),
/* OpenAI: o1 only */
reasoning_effort: eReasoningEffortSchema.optional(),
/* assistant */
assistant_id: z.string().optional(),
/* agents */
agent_id: z.string().optional(),
/* AWS Bedrock */
region: z.string().optional(),
maxTokens: coerceNumber.optional(),
additionalModelRequestFields: DocumentType.optional(),
/* assistants */
instructions: z.string().optional(),
additional_instructions: z.string().optional(),
append_current_datetime: z.boolean().optional(),
/** Used to overwrite active conversation settings when saving a Preset */
presetOverride: z.record(z.unknown()).optional(),
stop: z.array(z.string()).optional(),
/* frontend components */
greeting: z.string().optional(),
spec: z.string().nullable().optional(),
iconURL: z.string().nullable().optional(),
/* temporary chat */
expiredAt: z.string().nullable().optional(),
/** @deprecated */
resendImages: z.boolean().optional(),
/** @deprecated */
agentOptions: tAgentOptionsSchema.nullable().optional(),
/** @deprecated Prefer `modelLabel` over `chatGptLabel` */
chatGptLabel: z.string().nullable().optional(),
});
export const tPresetSchema = tConversationSchema
.omit({
conversationId: true,
createdAt: true,
updatedAt: true,
title: true,
})
.merge(
z.object({
conversationId: z.string().nullable().optional(),
presetId: z.string().nullable().optional(),
title: z.string().nullable().optional(),
defaultPreset: z.boolean().optional(),
order: z.number().optional(),
endpoint: extendedModelEndpointSchema.nullable(),
}),
);
export const tConvoUpdateSchema = tConversationSchema.merge(
z.object({
endpoint: extendedModelEndpointSchema.nullable(),
createdAt: z.string().optional(),
updatedAt: z.string().optional(),
}),
);
export const tQueryParamsSchema = tConversationSchema
.pick({
// librechat settings
/** The model spec to be used */
spec: true,
/** The AI context window, overrides the system-defined window as determined by `model` value */
maxContextTokens: true,
/**
* Whether or not to re-submit files from previous messages on subsequent messages
* */
resendFiles: true,
/**
* @endpoints openAI, custom, azureOpenAI
*
* System parameter that only affects the above endpoints.
* Image detail for re-sizing according to OpenAI spec, defaults to `auto`
* */
imageDetail: true,
/**
* AKA Custom Instructions, dynamically added to chat history as a system message;
* for `bedrock` endpoint, this is used as the `system` model param if the provider uses it;
* for `assistants` endpoint, this is used as the `additional_instructions` model param:
* https://platform.openai.com/docs/api-reference/runs/createRun#runs-createrun-additional_instructions
* ; otherwise, a message with `system` role is added to the chat history
*/
promptPrefix: true,
// Model parameters
/** @endpoints openAI, custom, azureOpenAI, google, anthropic, assistants, azureAssistants, bedrock */
model: true,
/** @endpoints openAI, custom, azureOpenAI, google, anthropic, bedrock */
temperature: true,
/** @endpoints openAI, custom, azureOpenAI */
presence_penalty: true,
/** @endpoints openAI, custom, azureOpenAI */
frequency_penalty: true,
/** @endpoints openAI, custom, azureOpenAI */
stop: true,
/** @endpoints openAI, custom, azureOpenAI */
top_p: true,
/** @endpoints openAI, custom, azureOpenAI */
max_tokens: true,
/** @endpoints google, anthropic, bedrock */
topP: true,
/** @endpoints google, anthropic */
topK: true,
/** @endpoints google, anthropic */
maxOutputTokens: true,
/** @endpoints anthropic */
promptCache: true,
thinking: true,
thinkingBudget: true,
/** @endpoints bedrock */
region: true,
/** @endpoints bedrock */
maxTokens: true,
/** @endpoints agents */
agent_id: true,
/** @endpoints assistants, azureAssistants */
assistant_id: true,
/** @endpoints assistants, azureAssistants */
append_current_datetime: true,
/**
* @endpoints assistants, azureAssistants
*
* Overrides existing assistant instructions, only used for the current run:
* https://platform.openai.com/docs/api-reference/runs/createRun#runs-createrun-instructions
* */
instructions: true,
})
.merge(
z.object({
/** @endpoints openAI, custom, azureOpenAI, google, anthropic, assistants, azureAssistants, bedrock, agents */
endpoint: extendedModelEndpointSchema.nullable(),
}),
);
export type TPreset = z.infer<typeof tPresetSchema>;
export type TSetOption = (
param: number | string,
) => (newValue: number | string | boolean | string[] | Partial<TPreset>) => void;
export type TConversation = z.infer<typeof tConversationSchema> & {
presetOverride?: Partial<TPreset>;
disableParams?: boolean;
};
export const tSharedLinkSchema = z.object({
conversationId: z.string(),
shareId: z.string(),
messages: z.array(z.string()),
isPublic: z.boolean(),
title: z.string(),
createdAt: z.string(),
updatedAt: z.string(),
});
export type TSharedLink = z.infer<typeof tSharedLinkSchema>;
export const tConversationTagSchema = z.object({
_id: z.string(),
user: z.string(),
tag: z.string(),
description: z.string().optional(),
createdAt: z.string(),
updatedAt: z.string(),
count: z.number(),
position: z.number(),
});
export type TConversationTag = z.infer<typeof tConversationTagSchema>;
export const googleBaseSchema = tConversationSchema.pick({
model: true,
modelLabel: true,
promptPrefix: true,
examples: true,
temperature: true,
maxOutputTokens: true,
artifacts: true,
topP: true,
topK: true,
iconURL: true,
greeting: true,
spec: true,
maxContextTokens: true,
});
export const googleSchema = googleBaseSchema
.transform((obj: Partial<TConversation>) => removeNullishValues(obj))
.catch(() => ({}));
/**
* TODO: Map the following fields:
- presence_penalty -> presencePenalty
- frequency_penalty -> frequencyPenalty
- stop -> stopSequences
*/
export const googleGenConfigSchema = z
.object({
maxOutputTokens: coerceNumber.optional(),
temperature: coerceNumber.optional(),
topP: coerceNumber.optional(),
topK: coerceNumber.optional(),
presencePenalty: coerceNumber.optional(),
frequencyPenalty: coerceNumber.optional(),
stopSequences: z.array(z.string()).optional(),
})
.strip()
.optional();
const gptPluginsBaseSchema = tConversationSchema.pick({
model: true,
modelLabel: true,
chatGptLabel: true,
promptPrefix: true,
temperature: true,
artifacts: true,
top_p: true,
presence_penalty: true,
frequency_penalty: true,
tools: true,
agentOptions: true,
iconURL: true,
greeting: true,
spec: true,
maxContextTokens: true,
});
export const gptPluginsSchema = gptPluginsBaseSchema
.transform((obj) => {
const result = {
...obj,
model: obj.model ?? 'gpt-3.5-turbo',
chatGptLabel: obj.chatGptLabel ?? obj.modelLabel ?? null,
promptPrefix: obj.promptPrefix ?? null,
temperature: obj.temperature ?? 0.8,
top_p: obj.top_p ?? 1,
presence_penalty: obj.presence_penalty ?? 0,
frequency_penalty: obj.frequency_penalty ?? 0,
tools: obj.tools ?? [],
agentOptions: obj.agentOptions ?? {
agent: EAgent.functions,
skipCompletion: true,
model: 'gpt-3.5-turbo',
temperature: 0,
},
iconURL: obj.iconURL ?? undefined,
greeting: obj.greeting ?? undefined,
spec: obj.spec ?? undefined,
maxContextTokens: obj.maxContextTokens ?? undefined,
};
if (obj.modelLabel != null && obj.modelLabel !== '') {
result.modelLabel = null;
}
return result;
})
.catch(() => ({
model: 'gpt-3.5-turbo',
chatGptLabel: null,
promptPrefix: null,
temperature: 0.8,
top_p: 1,
presence_penalty: 0,
frequency_penalty: 0,
tools: [],
agentOptions: {
agent: EAgent.functions,
skipCompletion: true,
model: 'gpt-3.5-turbo',
temperature: 0,
},
iconURL: undefined,
greeting: undefined,
spec: undefined,
maxContextTokens: undefined,
}));
export function removeNullishValues<T extends Record<string, unknown>>(
obj: T,
removeEmptyStrings?: boolean,
): Partial<T> {
const newObj: Partial<T> = { ...obj };
(Object.keys(newObj) as Array<keyof T>).forEach((key) => {
const value = newObj[key];
if (value === undefined || value === null) {
delete newObj[key];
}
if (removeEmptyStrings && typeof value === 'string' && value === '') {
delete newObj[key];
}
});
return newObj;
}
const assistantBaseSchema = tConversationSchema.pick({
model: true,
assistant_id: true,
instructions: true,
artifacts: true,
promptPrefix: true,
iconURL: true,
greeting: true,
spec: true,
append_current_datetime: true,
});
export const assistantSchema = assistantBaseSchema
.transform((obj) => ({
...obj,
model: obj.model ?? openAISettings.model.default,
assistant_id: obj.assistant_id ?? undefined,
instructions: obj.instructions ?? undefined,
promptPrefix: obj.promptPrefix ?? null,
iconURL: obj.iconURL ?? undefined,
greeting: obj.greeting ?? undefined,
spec: obj.spec ?? undefined,
append_current_datetime: obj.append_current_datetime ?? false,
}))
.catch(() => ({
model: openAISettings.model.default,
assistant_id: undefined,
instructions: undefined,
promptPrefix: null,
iconURL: undefined,
greeting: undefined,
spec: undefined,
append_current_datetime: false,
}));
const compactAssistantBaseSchema = tConversationSchema.pick({
model: true,
assistant_id: true,
instructions: true,
promptPrefix: true,
artifacts: true,
iconURL: true,
greeting: true,
spec: true,
});
export const compactAssistantSchema = compactAssistantBaseSchema
.transform((obj) => removeNullishValues(obj))
.catch(() => ({}));
export const agentsBaseSchema = tConversationSchema.pick({
model: true,
modelLabel: true,
temperature: true,
top_p: true,
presence_penalty: true,
frequency_penalty: true,
resendFiles: true,
imageDetail: true,
agent_id: true,
instructions: true,
promptPrefix: true,
iconURL: true,
greeting: true,
maxContextTokens: true,
});
export const agentsSchema = agentsBaseSchema
.transform((obj) => ({
...obj,
model: obj.model ?? agentsSettings.model.default,
modelLabel: obj.modelLabel ?? null,
temperature: obj.temperature ?? 1,
top_p: obj.top_p ?? 1,
presence_penalty: obj.presence_penalty ?? 0,
frequency_penalty: obj.frequency_penalty ?? 0,
resendFiles:
typeof obj.resendFiles === 'boolean' ? obj.resendFiles : agentsSettings.resendFiles.default,
imageDetail: obj.imageDetail ?? ImageDetail.auto,
agent_id: obj.agent_id ?? undefined,
instructions: obj.instructions ?? undefined,
promptPrefix: obj.promptPrefix ?? null,
iconURL: obj.iconURL ?? undefined,
greeting: obj.greeting ?? undefined,
maxContextTokens: obj.maxContextTokens ?? undefined,
}))
.catch(() => ({
model: agentsSettings.model.default,
modelLabel: null,
temperature: 1,
top_p: 1,
presence_penalty: 0,
frequency_penalty: 0,
resendFiles: agentsSettings.resendFiles.default,
imageDetail: ImageDetail.auto,
agent_id: undefined,
instructions: undefined,
promptPrefix: null,
iconURL: undefined,
greeting: undefined,
maxContextTokens: undefined,
}));
export const openAIBaseSchema = tConversationSchema.pick({
model: true,
modelLabel: true,
chatGptLabel: true,
promptPrefix: true,
temperature: true,
top_p: true,
presence_penalty: true,
frequency_penalty: true,
resendFiles: true,
artifacts: true,
imageDetail: true,
stop: true,
iconURL: true,
greeting: true,
spec: true,
maxContextTokens: true,
max_tokens: true,
reasoning_effort: true,
});
export const openAISchema = openAIBaseSchema
.transform((obj: Partial<TConversation>) => removeNullishValues(obj))
.catch(() => ({}));
export const compactGoogleSchema = googleBaseSchema
.transform((obj) => {
const newObj: Partial<TConversation> = { ...obj };
if (newObj.temperature === google.temperature.default) {
delete newObj.temperature;
}
if (newObj.maxOutputTokens === google.maxOutputTokens.default) {
delete newObj.maxOutputTokens;
}
if (newObj.topP === google.topP.default) {
delete newObj.topP;
}
if (newObj.topK === google.topK.default) {
delete newObj.topK;
}
return removeNullishValues(newObj);
})
.catch(() => ({}));
export const anthropicBaseSchema = tConversationSchema.pick({
model: true,
modelLabel: true,
promptPrefix: true,
temperature: true,
maxOutputTokens: true,
topP: true,
topK: true,
resendFiles: true,
promptCache: true,
thinking: true,
thinkingBudget: true,
artifacts: true,
iconURL: true,
greeting: true,
spec: true,
maxContextTokens: true,
});
export const anthropicSchema = anthropicBaseSchema
.transform((obj) => removeNullishValues(obj))
.catch(() => ({}));
export const compactPluginsSchema = gptPluginsBaseSchema
.transform((obj) => {
const newObj: Partial<TConversation> = { ...obj };
if (newObj.modelLabel === null) {
delete newObj.modelLabel;
}
if (newObj.chatGptLabel === null) {
delete newObj.chatGptLabel;
}
if (newObj.promptPrefix === null) {
delete newObj.promptPrefix;
}
if (newObj.temperature === 0.8) {
delete newObj.temperature;
}
if (newObj.top_p === 1) {
delete newObj.top_p;
}
if (newObj.presence_penalty === 0) {
delete newObj.presence_penalty;
}
if (newObj.frequency_penalty === 0) {
delete newObj.frequency_penalty;
}
if (newObj.tools?.length === 0) {
delete newObj.tools;
}
if (
newObj.agentOptions &&
newObj.agentOptions.agent === EAgent.functions &&
newObj.agentOptions.skipCompletion === true &&
newObj.agentOptions.model === 'gpt-3.5-turbo' &&
newObj.agentOptions.temperature === 0
) {
delete newObj.agentOptions;
}
return removeNullishValues(newObj);
})
.catch(() => ({}));
export const tBannerSchema = z.object({
bannerId: z.string(),
message: z.string(),
displayFrom: z.string(),
displayTo: z.string(),
createdAt: z.string(),
updatedAt: z.string(),
isPublic: z.boolean(),
});
export type TBanner = z.infer<typeof tBannerSchema>;
export const compactAgentsBaseSchema = tConversationSchema.pick({
spec: true,
// model: true,
iconURL: true,
greeting: true,
agent_id: true,
instructions: true,
additional_instructions: true,
});
export const compactAgentsSchema = compactAgentsBaseSchema
.transform((obj) => removeNullishValues(obj))
.catch(() => ({}));