mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 06:00:56 +02:00

* feat: o1 default response sender string * feat: add o1 models to default openai models list, add `no_system_messages` error type; refactor: use error type as localization key * refactor(MessageEndpointIcon): differentiate openAI icon model color for o1 models * refactor(AnthropicClient): use new input/output tokens keys; add prompt caching for claude-3-opus * refactor(BaseClient): to use new input/output tokens keys; update typedefs * feat: initial o1 model handling, including token cost complexity * EXPERIMENTAL: special handling for o1 model with custom instructions
949 lines
31 KiB
JavaScript
949 lines
31 KiB
JavaScript
const Anthropic = require('@anthropic-ai/sdk');
|
|
const { HttpsProxyAgent } = require('https-proxy-agent');
|
|
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
|
|
const {
|
|
Constants,
|
|
EModelEndpoint,
|
|
anthropicSettings,
|
|
getResponseSender,
|
|
validateVisionModel,
|
|
} = require('librechat-data-provider');
|
|
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
|
|
const {
|
|
truncateText,
|
|
formatMessage,
|
|
addCacheControl,
|
|
titleFunctionPrompt,
|
|
parseParamFromPrompt,
|
|
createContextHandlers,
|
|
} = require('./prompts');
|
|
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
|
|
const { getModelMaxTokens, matchModelName } = require('~/utils');
|
|
const { sleep } = require('~/server/utils');
|
|
const BaseClient = require('./BaseClient');
|
|
const { logger } = require('~/config');
|
|
|
|
const HUMAN_PROMPT = '\n\nHuman:';
|
|
const AI_PROMPT = '\n\nAssistant:';
|
|
|
|
const tokenizersCache = {};
|
|
|
|
/** Helper function to introduce a delay before retrying */
|
|
function delayBeforeRetry(attempts, baseDelay = 1000) {
|
|
return new Promise((resolve) => setTimeout(resolve, baseDelay * attempts));
|
|
}
|
|
|
|
const tokenEventTypes = new Set(['message_start', 'message_delta']);
|
|
const { legacy } = anthropicSettings;
|
|
|
|
class AnthropicClient extends BaseClient {
|
|
constructor(apiKey, options = {}) {
|
|
super(apiKey, options);
|
|
this.apiKey = apiKey || process.env.ANTHROPIC_API_KEY;
|
|
this.userLabel = HUMAN_PROMPT;
|
|
this.assistantLabel = AI_PROMPT;
|
|
this.contextStrategy = options.contextStrategy
|
|
? options.contextStrategy.toLowerCase()
|
|
: 'discard';
|
|
this.setOptions(options);
|
|
/** @type {string | undefined} */
|
|
this.systemMessage;
|
|
/** @type {AnthropicMessageStartEvent| undefined} */
|
|
this.message_start;
|
|
/** @type {AnthropicMessageDeltaEvent| undefined} */
|
|
this.message_delta;
|
|
/** Whether the model is part of the Claude 3 Family
|
|
* @type {boolean} */
|
|
this.isClaude3;
|
|
/** Whether to use Messages API or Completions API
|
|
* @type {boolean} */
|
|
this.useMessages;
|
|
/** Whether or not the model is limited to the legacy amount of output tokens
|
|
* @type {boolean} */
|
|
this.isLegacyOutput;
|
|
/** Whether or not the model supports Prompt Caching
|
|
* @type {boolean} */
|
|
this.supportsCacheControl;
|
|
/** The key for the usage object's input tokens
|
|
* @type {string} */
|
|
this.inputTokensKey = 'input_tokens';
|
|
/** The key for the usage object's output tokens
|
|
* @type {string} */
|
|
this.outputTokensKey = 'output_tokens';
|
|
}
|
|
|
|
setOptions(options) {
|
|
if (this.options && !this.options.replaceOptions) {
|
|
// nested options aren't spread properly, so we need to do this manually
|
|
this.options.modelOptions = {
|
|
...this.options.modelOptions,
|
|
...options.modelOptions,
|
|
};
|
|
delete options.modelOptions;
|
|
// now we can merge options
|
|
this.options = {
|
|
...this.options,
|
|
...options,
|
|
};
|
|
} else {
|
|
this.options = options;
|
|
}
|
|
|
|
this.modelOptions = Object.assign(
|
|
{
|
|
model: anthropicSettings.model.default,
|
|
},
|
|
this.modelOptions,
|
|
this.options.modelOptions,
|
|
);
|
|
|
|
const modelMatch = matchModelName(this.modelOptions.model, EModelEndpoint.anthropic);
|
|
this.isClaude3 = modelMatch.startsWith('claude-3');
|
|
this.isLegacyOutput = !modelMatch.startsWith('claude-3-5-sonnet');
|
|
this.supportsCacheControl =
|
|
this.options.promptCache && this.checkPromptCacheSupport(modelMatch);
|
|
|
|
if (
|
|
this.isLegacyOutput &&
|
|
this.modelOptions.maxOutputTokens &&
|
|
this.modelOptions.maxOutputTokens > legacy.maxOutputTokens.default
|
|
) {
|
|
this.modelOptions.maxOutputTokens = legacy.maxOutputTokens.default;
|
|
}
|
|
|
|
this.useMessages = this.isClaude3 || !!this.options.attachments;
|
|
|
|
this.defaultVisionModel = this.options.visionModel ?? 'claude-3-sonnet-20240229';
|
|
this.options.attachments?.then((attachments) => this.checkVisionRequest(attachments));
|
|
|
|
this.maxContextTokens =
|
|
this.options.maxContextTokens ??
|
|
getModelMaxTokens(this.modelOptions.model, EModelEndpoint.anthropic) ??
|
|
100000;
|
|
this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1500;
|
|
this.maxPromptTokens =
|
|
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
|
|
|
|
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
|
|
throw new Error(
|
|
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
|
|
this.maxPromptTokens + this.maxResponseTokens
|
|
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
|
|
);
|
|
}
|
|
|
|
this.sender =
|
|
this.options.sender ??
|
|
getResponseSender({
|
|
model: this.modelOptions.model,
|
|
endpoint: EModelEndpoint.anthropic,
|
|
modelLabel: this.options.modelLabel,
|
|
});
|
|
|
|
this.startToken = '||>';
|
|
this.endToken = '';
|
|
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
|
|
|
|
if (!this.modelOptions.stop) {
|
|
const stopTokens = [this.startToken];
|
|
if (this.endToken && this.endToken !== this.startToken) {
|
|
stopTokens.push(this.endToken);
|
|
}
|
|
stopTokens.push(`${this.userLabel}`);
|
|
stopTokens.push('<|diff_marker|>');
|
|
|
|
this.modelOptions.stop = stopTokens;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Get the initialized Anthropic client.
|
|
* @param {Partial<Anthropic.ClientOptions>} requestOptions - The options for the client.
|
|
* @returns {Anthropic} The Anthropic client instance.
|
|
*/
|
|
getClient(requestOptions) {
|
|
/** @type {Anthropic.ClientOptions} */
|
|
const options = {
|
|
fetch: this.fetch,
|
|
apiKey: this.apiKey,
|
|
};
|
|
|
|
if (this.options.proxy) {
|
|
options.httpAgent = new HttpsProxyAgent(this.options.proxy);
|
|
}
|
|
|
|
if (this.options.reverseProxyUrl) {
|
|
options.baseURL = this.options.reverseProxyUrl;
|
|
}
|
|
|
|
if (
|
|
this.supportsCacheControl &&
|
|
requestOptions?.model &&
|
|
requestOptions.model.includes('claude-3-5-sonnet')
|
|
) {
|
|
options.defaultHeaders = {
|
|
'anthropic-beta': 'max-tokens-3-5-sonnet-2024-07-15,prompt-caching-2024-07-31',
|
|
};
|
|
} else if (this.supportsCacheControl) {
|
|
options.defaultHeaders = {
|
|
'anthropic-beta': 'prompt-caching-2024-07-31',
|
|
};
|
|
}
|
|
|
|
return new Anthropic(options);
|
|
}
|
|
|
|
/**
|
|
* Get stream usage as returned by this client's API response.
|
|
* @returns {AnthropicStreamUsage} The stream usage object.
|
|
*/
|
|
getStreamUsage() {
|
|
const inputUsage = this.message_start?.message?.usage ?? {};
|
|
const outputUsage = this.message_delta?.usage ?? {};
|
|
return Object.assign({}, inputUsage, outputUsage);
|
|
}
|
|
|
|
/**
|
|
* Calculates the correct token count for the current user message based on the token count map and API usage.
|
|
* Edge case: If the calculation results in a negative value, it returns the original estimate.
|
|
* If revisiting a conversation with a chat history entirely composed of token estimates,
|
|
* the cumulative token count going forward should become more accurate as the conversation progresses.
|
|
* @param {Object} params - The parameters for the calculation.
|
|
* @param {Record<string, number>} params.tokenCountMap - A map of message IDs to their token counts.
|
|
* @param {string} params.currentMessageId - The ID of the current message to calculate.
|
|
* @param {AnthropicStreamUsage} params.usage - The usage object returned by the API.
|
|
* @returns {number} The correct token count for the current user message.
|
|
*/
|
|
calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage }) {
|
|
const originalEstimate = tokenCountMap[currentMessageId] || 0;
|
|
|
|
if (!usage || typeof usage.input_tokens !== 'number') {
|
|
return originalEstimate;
|
|
}
|
|
|
|
tokenCountMap[currentMessageId] = 0;
|
|
const totalTokensFromMap = Object.values(tokenCountMap).reduce((sum, count) => {
|
|
const numCount = Number(count);
|
|
return sum + (isNaN(numCount) ? 0 : numCount);
|
|
}, 0);
|
|
const totalInputTokens =
|
|
(usage.input_tokens ?? 0) +
|
|
(usage.cache_creation_input_tokens ?? 0) +
|
|
(usage.cache_read_input_tokens ?? 0);
|
|
|
|
const currentMessageTokens = totalInputTokens - totalTokensFromMap;
|
|
return currentMessageTokens > 0 ? currentMessageTokens : originalEstimate;
|
|
}
|
|
|
|
/**
|
|
* Get Token Count for LibreChat Message
|
|
* @param {TMessage} responseMessage
|
|
* @returns {number}
|
|
*/
|
|
getTokenCountForResponse(responseMessage) {
|
|
return this.getTokenCountForMessage({
|
|
role: 'assistant',
|
|
content: responseMessage.text,
|
|
});
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
|
|
* - Sets `this.modelOptions.model` to `gpt-4-vision-preview` if the request is a vision request.
|
|
* - Sets `this.isVisionModel` to `true` if vision request.
|
|
* - Deletes `this.modelOptions.stop` if vision request.
|
|
* @param {MongoFile[]} attachments
|
|
*/
|
|
checkVisionRequest(attachments) {
|
|
const availableModels = this.options.modelsConfig?.[EModelEndpoint.anthropic];
|
|
this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
|
|
|
|
const visionModelAvailable = availableModels?.includes(this.defaultVisionModel);
|
|
if (
|
|
attachments &&
|
|
attachments.some((file) => file?.type && file?.type?.includes('image')) &&
|
|
visionModelAvailable &&
|
|
!this.isVisionModel
|
|
) {
|
|
this.modelOptions.model = this.defaultVisionModel;
|
|
this.isVisionModel = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate the token cost in tokens for an image based on its dimensions and detail level.
|
|
*
|
|
* For reference, see: https://docs.anthropic.com/claude/docs/vision#image-costs
|
|
*
|
|
* @param {Object} image - The image object.
|
|
* @param {number} image.width - The width of the image.
|
|
* @param {number} image.height - The height of the image.
|
|
* @returns {number} The calculated token cost measured by tokens.
|
|
*
|
|
*/
|
|
calculateImageTokenCost({ width, height }) {
|
|
return Math.ceil((width * height) / 750);
|
|
}
|
|
|
|
async addImageURLs(message, attachments) {
|
|
const { files, image_urls } = await encodeAndFormat(
|
|
this.options.req,
|
|
attachments,
|
|
EModelEndpoint.anthropic,
|
|
);
|
|
message.image_urls = image_urls.length ? image_urls : undefined;
|
|
return files;
|
|
}
|
|
|
|
/**
|
|
* @param {object} params
|
|
* @param {number} params.promptTokens
|
|
* @param {number} params.completionTokens
|
|
* @param {AnthropicStreamUsage} [params.usage]
|
|
* @param {string} [params.model]
|
|
* @param {string} [params.context='message']
|
|
* @returns {Promise<void>}
|
|
*/
|
|
async recordTokenUsage({ promptTokens, completionTokens, usage, model, context = 'message' }) {
|
|
if (usage != null && usage?.input_tokens != null) {
|
|
const input = usage.input_tokens ?? 0;
|
|
const write = usage.cache_creation_input_tokens ?? 0;
|
|
const read = usage.cache_read_input_tokens ?? 0;
|
|
|
|
await spendStructuredTokens(
|
|
{
|
|
context,
|
|
user: this.user,
|
|
conversationId: this.conversationId,
|
|
model: model ?? this.modelOptions.model,
|
|
endpointTokenConfig: this.options.endpointTokenConfig,
|
|
},
|
|
{
|
|
promptTokens: { input, write, read },
|
|
completionTokens,
|
|
},
|
|
);
|
|
|
|
return;
|
|
}
|
|
|
|
await spendTokens(
|
|
{
|
|
context,
|
|
user: this.user,
|
|
conversationId: this.conversationId,
|
|
model: model ?? this.modelOptions.model,
|
|
endpointTokenConfig: this.options.endpointTokenConfig,
|
|
},
|
|
{ promptTokens, completionTokens },
|
|
);
|
|
}
|
|
|
|
async buildMessages(messages, parentMessageId) {
|
|
const orderedMessages = this.constructor.getMessagesForConversation({
|
|
messages,
|
|
parentMessageId,
|
|
});
|
|
|
|
logger.debug('[AnthropicClient] orderedMessages', { orderedMessages, parentMessageId });
|
|
|
|
if (this.options.attachments) {
|
|
const attachments = await this.options.attachments;
|
|
const images = attachments.filter((file) => file.type.includes('image'));
|
|
|
|
if (images.length && !this.isVisionModel) {
|
|
throw new Error('Images are only supported with the Claude 3 family of models');
|
|
}
|
|
|
|
const latestMessage = orderedMessages[orderedMessages.length - 1];
|
|
|
|
if (this.message_file_map) {
|
|
this.message_file_map[latestMessage.messageId] = attachments;
|
|
} else {
|
|
this.message_file_map = {
|
|
[latestMessage.messageId]: attachments,
|
|
};
|
|
}
|
|
|
|
const files = await this.addImageURLs(latestMessage, attachments);
|
|
|
|
this.options.attachments = files;
|
|
}
|
|
|
|
if (this.message_file_map) {
|
|
this.contextHandlers = createContextHandlers(
|
|
this.options.req,
|
|
orderedMessages[orderedMessages.length - 1].text,
|
|
);
|
|
}
|
|
|
|
const formattedMessages = orderedMessages.map((message, i) => {
|
|
const formattedMessage = this.useMessages
|
|
? formatMessage({
|
|
message,
|
|
endpoint: EModelEndpoint.anthropic,
|
|
})
|
|
: {
|
|
author: message.isCreatedByUser ? this.userLabel : this.assistantLabel,
|
|
content: message?.content ?? message.text,
|
|
};
|
|
|
|
const needsTokenCount = this.contextStrategy && !orderedMessages[i].tokenCount;
|
|
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
|
|
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
|
|
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
|
|
}
|
|
|
|
/* If message has files, calculate image token cost */
|
|
if (this.message_file_map && this.message_file_map[message.messageId]) {
|
|
const attachments = this.message_file_map[message.messageId];
|
|
for (const file of attachments) {
|
|
if (file.embedded) {
|
|
this.contextHandlers?.processFile(file);
|
|
continue;
|
|
}
|
|
|
|
orderedMessages[i].tokenCount += this.calculateImageTokenCost({
|
|
width: file.width,
|
|
height: file.height,
|
|
});
|
|
}
|
|
}
|
|
|
|
formattedMessage.tokenCount = orderedMessages[i].tokenCount;
|
|
return formattedMessage;
|
|
});
|
|
|
|
if (this.contextHandlers) {
|
|
this.augmentedPrompt = await this.contextHandlers.createContext();
|
|
this.options.promptPrefix = this.augmentedPrompt + (this.options.promptPrefix ?? '');
|
|
}
|
|
|
|
let { context: messagesInWindow, remainingContextTokens } =
|
|
await this.getMessagesWithinTokenLimit(formattedMessages);
|
|
|
|
const tokenCountMap = orderedMessages
|
|
.slice(orderedMessages.length - messagesInWindow.length)
|
|
.reduce((map, message, index) => {
|
|
const { messageId } = message;
|
|
if (!messageId) {
|
|
return map;
|
|
}
|
|
|
|
map[messageId] = orderedMessages[index].tokenCount;
|
|
return map;
|
|
}, {});
|
|
|
|
logger.debug('[AnthropicClient]', {
|
|
messagesInWindow: messagesInWindow.length,
|
|
remainingContextTokens,
|
|
});
|
|
|
|
let lastAuthor = '';
|
|
let groupedMessages = [];
|
|
|
|
for (let i = 0; i < messagesInWindow.length; i++) {
|
|
const message = messagesInWindow[i];
|
|
const author = message.role ?? message.author;
|
|
// If last author is not same as current author, add to new group
|
|
if (lastAuthor !== author) {
|
|
const newMessage = {
|
|
content: [message.content],
|
|
};
|
|
|
|
if (message.role) {
|
|
newMessage.role = message.role;
|
|
} else {
|
|
newMessage.author = message.author;
|
|
}
|
|
|
|
groupedMessages.push(newMessage);
|
|
lastAuthor = author;
|
|
// If same author, append content to the last group
|
|
} else {
|
|
groupedMessages[groupedMessages.length - 1].content.push(message.content);
|
|
}
|
|
}
|
|
|
|
groupedMessages = groupedMessages.map((msg, i) => {
|
|
const isLast = i === groupedMessages.length - 1;
|
|
if (msg.content.length === 1) {
|
|
const content = msg.content[0];
|
|
return {
|
|
...msg,
|
|
// reason: final assistant content cannot end with trailing whitespace
|
|
content:
|
|
isLast && this.useMessages && msg.role === 'assistant' && typeof content === 'string'
|
|
? content?.trim()
|
|
: content,
|
|
};
|
|
}
|
|
|
|
if (!this.useMessages && msg.tokenCount) {
|
|
delete msg.tokenCount;
|
|
}
|
|
|
|
return msg;
|
|
});
|
|
|
|
let identityPrefix = '';
|
|
if (this.options.userLabel) {
|
|
identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
|
|
}
|
|
|
|
if (this.options.modelLabel) {
|
|
identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
|
|
}
|
|
|
|
let promptPrefix = (this.options.promptPrefix ?? '').trim();
|
|
if (typeof this.options.artifactsPrompt === 'string' && this.options.artifactsPrompt) {
|
|
promptPrefix = `${promptPrefix ?? ''}\n${this.options.artifactsPrompt}`.trim();
|
|
}
|
|
if (promptPrefix) {
|
|
// If the prompt prefix doesn't end with the end token, add it.
|
|
if (!promptPrefix.endsWith(`${this.endToken}`)) {
|
|
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
|
|
}
|
|
promptPrefix = `\nContext:\n${promptPrefix}`;
|
|
}
|
|
|
|
if (identityPrefix) {
|
|
promptPrefix = `${identityPrefix}${promptPrefix}`;
|
|
}
|
|
|
|
// Prompt AI to respond, empty if last message was from AI
|
|
let isEdited = lastAuthor === this.assistantLabel;
|
|
const promptSuffix = isEdited ? '' : `${promptPrefix}${this.assistantLabel}\n`;
|
|
let currentTokenCount =
|
|
isEdited || this.useMessages
|
|
? this.getTokenCount(promptPrefix)
|
|
: this.getTokenCount(promptSuffix);
|
|
|
|
let promptBody = '';
|
|
const maxTokenCount = this.maxPromptTokens;
|
|
|
|
const context = [];
|
|
|
|
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
|
|
// Do this within a recursive async function so that it doesn't block the event loop for too long.
|
|
// Also, remove the next message when the message that puts us over the token limit is created by the user.
|
|
// Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
|
|
const nextMessage = {
|
|
remove: false,
|
|
tokenCount: 0,
|
|
messageString: '',
|
|
};
|
|
|
|
const buildPromptBody = async () => {
|
|
if (currentTokenCount < maxTokenCount && groupedMessages.length > 0) {
|
|
const message = groupedMessages.pop();
|
|
const isCreatedByUser = message.author === this.userLabel;
|
|
// Use promptPrefix if message is edited assistant'
|
|
const messagePrefix =
|
|
isCreatedByUser || !isEdited ? message.author : `${promptPrefix}${message.author}`;
|
|
const messageString = `${messagePrefix}\n${message.content}${this.endToken}\n`;
|
|
let newPromptBody = `${messageString}${promptBody}`;
|
|
|
|
context.unshift(message);
|
|
|
|
const tokenCountForMessage = this.getTokenCount(messageString);
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
|
|
if (!isCreatedByUser) {
|
|
nextMessage.messageString = messageString;
|
|
nextMessage.tokenCount = tokenCountForMessage;
|
|
}
|
|
|
|
if (newTokenCount > maxTokenCount) {
|
|
if (!promptBody) {
|
|
// This is the first message, so we can't add it. Just throw an error.
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
}
|
|
|
|
// Otherwise, ths message would put us over the token limit, so don't add it.
|
|
// if created by user, remove next message, otherwise remove only this message
|
|
if (isCreatedByUser) {
|
|
nextMessage.remove = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
promptBody = newPromptBody;
|
|
currentTokenCount = newTokenCount;
|
|
|
|
// Switch off isEdited after using it for the first time
|
|
if (isEdited) {
|
|
isEdited = false;
|
|
}
|
|
|
|
// wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setImmediate(resolve));
|
|
return buildPromptBody();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
const messagesPayload = [];
|
|
const buildMessagesPayload = async () => {
|
|
let canContinue = true;
|
|
|
|
if (promptPrefix) {
|
|
this.systemMessage = promptPrefix;
|
|
}
|
|
|
|
while (currentTokenCount < maxTokenCount && groupedMessages.length > 0 && canContinue) {
|
|
const message = groupedMessages.pop();
|
|
|
|
let tokenCountForMessage = message.tokenCount ?? this.getTokenCountForMessage(message);
|
|
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
const exceededMaxCount = newTokenCount > maxTokenCount;
|
|
|
|
if (exceededMaxCount && messagesPayload.length === 0) {
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
} else if (exceededMaxCount) {
|
|
canContinue = false;
|
|
break;
|
|
}
|
|
|
|
delete message.tokenCount;
|
|
messagesPayload.unshift(message);
|
|
currentTokenCount = newTokenCount;
|
|
|
|
// Switch off isEdited after using it once
|
|
if (isEdited && message.role === 'assistant') {
|
|
isEdited = false;
|
|
}
|
|
|
|
// Wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setImmediate(resolve));
|
|
}
|
|
};
|
|
|
|
const processTokens = () => {
|
|
// Add 2 tokens for metadata after all messages have been counted.
|
|
currentTokenCount += 2;
|
|
|
|
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
|
|
this.modelOptions.maxOutputTokens = Math.min(
|
|
this.maxContextTokens - currentTokenCount,
|
|
this.maxResponseTokens,
|
|
);
|
|
};
|
|
|
|
if (this.modelOptions.model.startsWith('claude-3')) {
|
|
await buildMessagesPayload();
|
|
processTokens();
|
|
return {
|
|
prompt: messagesPayload,
|
|
context: messagesInWindow,
|
|
promptTokens: currentTokenCount,
|
|
tokenCountMap,
|
|
};
|
|
} else {
|
|
await buildPromptBody();
|
|
processTokens();
|
|
}
|
|
|
|
if (nextMessage.remove) {
|
|
promptBody = promptBody.replace(nextMessage.messageString, '');
|
|
currentTokenCount -= nextMessage.tokenCount;
|
|
context.shift();
|
|
}
|
|
|
|
let prompt = `${promptBody}${promptSuffix}`;
|
|
|
|
return { prompt, context, promptTokens: currentTokenCount, tokenCountMap };
|
|
}
|
|
|
|
getCompletion() {
|
|
logger.debug('AnthropicClient doesn\'t use getCompletion (all handled in sendCompletion)');
|
|
}
|
|
|
|
/**
|
|
* Creates a message or completion response using the Anthropic client.
|
|
* @param {Anthropic} client - The Anthropic client instance.
|
|
* @param {Anthropic.default.MessageCreateParams | Anthropic.default.CompletionCreateParams} options - The options for the message or completion.
|
|
* @param {boolean} useMessages - Whether to use messages or completions. Defaults to `this.useMessages`.
|
|
* @returns {Promise<Anthropic.default.Message | Anthropic.default.Completion>} The response from the Anthropic client.
|
|
*/
|
|
async createResponse(client, options, useMessages) {
|
|
return useMessages ?? this.useMessages
|
|
? await client.messages.create(options)
|
|
: await client.completions.create(options);
|
|
}
|
|
|
|
/**
|
|
* @param {string} modelName
|
|
* @returns {boolean}
|
|
*/
|
|
checkPromptCacheSupport(modelName) {
|
|
const modelMatch = matchModelName(modelName, EModelEndpoint.anthropic);
|
|
if (
|
|
modelMatch === 'claude-3-5-sonnet' ||
|
|
modelMatch === 'claude-3-haiku' ||
|
|
modelMatch === 'claude-3-opus'
|
|
) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
async sendCompletion(payload, { onProgress, abortController }) {
|
|
if (!abortController) {
|
|
abortController = new AbortController();
|
|
}
|
|
|
|
const { signal } = abortController;
|
|
|
|
const modelOptions = { ...this.modelOptions };
|
|
if (typeof onProgress === 'function') {
|
|
modelOptions.stream = true;
|
|
}
|
|
|
|
logger.debug('modelOptions', { modelOptions });
|
|
const metadata = {
|
|
user_id: this.user,
|
|
};
|
|
|
|
let text = '';
|
|
const {
|
|
stream,
|
|
model,
|
|
temperature,
|
|
maxOutputTokens,
|
|
stop: stop_sequences,
|
|
topP: top_p,
|
|
topK: top_k,
|
|
} = this.modelOptions;
|
|
|
|
const requestOptions = {
|
|
model,
|
|
stream: stream || true,
|
|
stop_sequences,
|
|
temperature,
|
|
metadata,
|
|
top_p,
|
|
top_k,
|
|
};
|
|
|
|
if (this.useMessages) {
|
|
requestOptions.messages = payload;
|
|
requestOptions.max_tokens = maxOutputTokens || legacy.maxOutputTokens.default;
|
|
} else {
|
|
requestOptions.prompt = payload;
|
|
requestOptions.max_tokens_to_sample = maxOutputTokens || 1500;
|
|
}
|
|
|
|
if (this.systemMessage && this.supportsCacheControl === true) {
|
|
requestOptions.system = [
|
|
{
|
|
type: 'text',
|
|
text: this.systemMessage,
|
|
cache_control: { type: 'ephemeral' },
|
|
},
|
|
];
|
|
} else if (this.systemMessage) {
|
|
requestOptions.system = this.systemMessage;
|
|
}
|
|
|
|
if (this.supportsCacheControl === true && this.useMessages) {
|
|
requestOptions.messages = addCacheControl(requestOptions.messages);
|
|
}
|
|
|
|
logger.debug('[AnthropicClient]', { ...requestOptions });
|
|
|
|
const handleChunk = (currentChunk) => {
|
|
if (currentChunk) {
|
|
text += currentChunk;
|
|
onProgress(currentChunk);
|
|
}
|
|
};
|
|
|
|
const maxRetries = 3;
|
|
const streamRate = this.options.streamRate ?? Constants.DEFAULT_STREAM_RATE;
|
|
async function processResponse() {
|
|
let attempts = 0;
|
|
|
|
while (attempts < maxRetries) {
|
|
let response;
|
|
try {
|
|
const client = this.getClient(requestOptions);
|
|
response = await this.createResponse(client, requestOptions);
|
|
|
|
signal.addEventListener('abort', () => {
|
|
logger.debug('[AnthropicClient] message aborted!');
|
|
if (response.controller?.abort) {
|
|
response.controller.abort();
|
|
}
|
|
});
|
|
|
|
for await (const completion of response) {
|
|
// Handle each completion as before
|
|
const type = completion?.type ?? '';
|
|
if (tokenEventTypes.has(type)) {
|
|
logger.debug(`[AnthropicClient] ${type}`, completion);
|
|
this[type] = completion;
|
|
}
|
|
if (completion?.delta?.text) {
|
|
handleChunk(completion.delta.text);
|
|
} else if (completion.completion) {
|
|
handleChunk(completion.completion);
|
|
}
|
|
|
|
await sleep(streamRate);
|
|
}
|
|
|
|
// Successful processing, exit loop
|
|
break;
|
|
} catch (error) {
|
|
attempts += 1;
|
|
logger.warn(
|
|
`User: ${this.user} | Anthropic Request ${attempts} failed: ${error.message}`,
|
|
);
|
|
|
|
if (attempts < maxRetries) {
|
|
await delayBeforeRetry(attempts, 350);
|
|
} else {
|
|
throw new Error(`Operation failed after ${maxRetries} attempts: ${error.message}`);
|
|
}
|
|
} finally {
|
|
signal.removeEventListener('abort', () => {
|
|
logger.debug('[AnthropicClient] message aborted!');
|
|
if (response.controller?.abort) {
|
|
response.controller.abort();
|
|
}
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
await processResponse.bind(this)();
|
|
|
|
return text.trim();
|
|
}
|
|
|
|
getSaveOptions() {
|
|
return {
|
|
maxContextTokens: this.options.maxContextTokens,
|
|
artifacts: this.options.artifacts,
|
|
promptPrefix: this.options.promptPrefix,
|
|
modelLabel: this.options.modelLabel,
|
|
promptCache: this.options.promptCache,
|
|
resendFiles: this.options.resendFiles,
|
|
iconURL: this.options.iconURL,
|
|
greeting: this.options.greeting,
|
|
spec: this.options.spec,
|
|
...this.modelOptions,
|
|
};
|
|
}
|
|
|
|
getBuildMessagesOptions() {
|
|
logger.debug('AnthropicClient doesn\'t use getBuildMessagesOptions');
|
|
}
|
|
|
|
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
|
|
if (tokenizersCache[encoding]) {
|
|
return tokenizersCache[encoding];
|
|
}
|
|
let tokenizer;
|
|
if (isModelName) {
|
|
tokenizer = encodingForModel(encoding, extendSpecialTokens);
|
|
} else {
|
|
tokenizer = getEncoding(encoding, extendSpecialTokens);
|
|
}
|
|
tokenizersCache[encoding] = tokenizer;
|
|
return tokenizer;
|
|
}
|
|
|
|
getTokenCount(text) {
|
|
return this.gptEncoder.encode(text, 'all').length;
|
|
}
|
|
|
|
/**
|
|
* Generates a concise title for a conversation based on the user's input text and response.
|
|
* Involves sending a chat completion request with specific instructions for title generation.
|
|
*
|
|
* This function capitlizes on [Anthropic's function calling training](https://docs.anthropic.com/claude/docs/functions-external-tools).
|
|
*
|
|
* @param {Object} params - The parameters for the conversation title generation.
|
|
* @param {string} params.text - The user's input.
|
|
* @param {string} [params.responseText=''] - The AI's immediate response to the user.
|
|
*
|
|
* @returns {Promise<string | 'New Chat'>} A promise that resolves to the generated conversation title.
|
|
* In case of failure, it will return the default title, "New Chat".
|
|
*/
|
|
async titleConvo({ text, responseText = '' }) {
|
|
let title = 'New Chat';
|
|
this.message_delta = undefined;
|
|
this.message_start = undefined;
|
|
const convo = `<initial_message>
|
|
${truncateText(text)}
|
|
</initial_message>
|
|
<response>
|
|
${JSON.stringify(truncateText(responseText))}
|
|
</response>`;
|
|
|
|
const { ANTHROPIC_TITLE_MODEL } = process.env ?? {};
|
|
const model = this.options.titleModel ?? ANTHROPIC_TITLE_MODEL ?? 'claude-3-haiku-20240307';
|
|
const system = titleFunctionPrompt;
|
|
|
|
const titleChatCompletion = async () => {
|
|
const content = `<conversation_context>
|
|
${convo}
|
|
</conversation_context>
|
|
|
|
Please generate a title for this conversation.`;
|
|
|
|
const titleMessage = { role: 'user', content };
|
|
const requestOptions = {
|
|
model,
|
|
temperature: 0.3,
|
|
max_tokens: 1024,
|
|
system,
|
|
stop_sequences: ['\n\nHuman:', '\n\nAssistant', '</function_calls>'],
|
|
messages: [titleMessage],
|
|
};
|
|
|
|
try {
|
|
const response = await this.createResponse(
|
|
this.getClient(requestOptions),
|
|
requestOptions,
|
|
true,
|
|
);
|
|
let promptTokens = response?.usage?.input_tokens;
|
|
let completionTokens = response?.usage?.output_tokens;
|
|
if (!promptTokens) {
|
|
promptTokens = this.getTokenCountForMessage(titleMessage);
|
|
promptTokens += this.getTokenCountForMessage({ role: 'system', content: system });
|
|
}
|
|
if (!completionTokens) {
|
|
completionTokens = this.getTokenCountForMessage(response.content[0]);
|
|
}
|
|
await this.recordTokenUsage({
|
|
model,
|
|
promptTokens,
|
|
completionTokens,
|
|
context: 'title',
|
|
});
|
|
const text = response.content[0].text;
|
|
title = parseParamFromPrompt(text, 'title');
|
|
} catch (e) {
|
|
logger.error('[AnthropicClient] There was an issue generating the title', e);
|
|
}
|
|
};
|
|
|
|
await titleChatCompletion();
|
|
logger.debug('[AnthropicClient] Convo Title: ' + title);
|
|
return title;
|
|
}
|
|
}
|
|
|
|
module.exports = AnthropicClient;
|