LibreChat/api/app/clients/GoogleClient.js
Danny Avila 37b50736bc
🔧 fix: Google Gemma Support & OpenAI Reasoning Instructions (#7196)
* 🔄 chore: Update @langchain/google-vertexai to version 0.2.5 in package.json and package-lock.json

* chore: temp remove agents

* 🔄 chore: Update @langchain/google-genai to version 0.2.5 in package.json and package-lock.json

* 🔄 chore: Update @langchain/community to version 0.3.42 in package.json and package-lock.json

* 🔄 chore: Add license information for @langchain/textsplitters in package-lock.json

* 🔄 chore: Update @langchain/core to version 0.3.51 in package.json and package-lock.json

* 🔄 chore: Update openai dependency to version 4.96.2 in package.json and package-lock.json

* chore: @librechat/agents to v2.4.30

* fix: streaming condition in ModelEndHandler to account for boundModel `disableStreaming` setting

* fix: update regex for noSystemModel and refactor message handling in AgentClient

* feat: Google Gemma models

* chore: remove unnecessary empty JSX fragment in PopoverButtons component
2025-05-02 15:11:50 -04:00

981 lines
31 KiB
JavaScript

const { google } = require('googleapis');
const { concat } = require('@langchain/core/utils/stream');
const { ChatVertexAI } = require('@langchain/google-vertexai');
const { ChatGoogleGenerativeAI } = require('@langchain/google-genai');
const { GoogleGenerativeAI: GenAI } = require('@google/generative-ai');
const { HumanMessage, SystemMessage } = require('@langchain/core/messages');
const {
googleGenConfigSchema,
validateVisionModel,
getResponseSender,
endpointSettings,
parseTextParts,
EModelEndpoint,
ContentTypes,
VisionModes,
ErrorTypes,
Constants,
AuthKeys,
} = require('librechat-data-provider');
const { getSafetySettings } = require('~/server/services/Endpoints/google/llm');
const { encodeAndFormat } = require('~/server/services/Files/images');
const Tokenizer = require('~/server/services/Tokenizer');
const { spendTokens } = require('~/models/spendTokens');
const { getModelMaxTokens } = require('~/utils');
const { sleep } = require('~/server/utils');
const { logger } = require('~/config');
const {
formatMessage,
createContextHandlers,
titleInstruction,
truncateText,
} = require('./prompts');
const BaseClient = require('./BaseClient');
const loc = process.env.GOOGLE_LOC || 'us-central1';
const publisher = 'google';
const endpointPrefix = `${loc}-aiplatform.googleapis.com`;
const settings = endpointSettings[EModelEndpoint.google];
const EXCLUDED_GENAI_MODELS = /gemini-(?:1\.0|1-0|pro)/;
class GoogleClient extends BaseClient {
constructor(credentials, options = {}) {
super('apiKey', options);
let creds = {};
if (typeof credentials === 'string') {
creds = JSON.parse(credentials);
} else if (credentials) {
creds = credentials;
}
const serviceKey = creds[AuthKeys.GOOGLE_SERVICE_KEY] ?? {};
this.serviceKey =
serviceKey && typeof serviceKey === 'string' ? JSON.parse(serviceKey) : (serviceKey ?? {});
/** @type {string | null | undefined} */
this.project_id = this.serviceKey.project_id;
this.client_email = this.serviceKey.client_email;
this.private_key = this.serviceKey.private_key;
this.access_token = null;
this.apiKey = creds[AuthKeys.GOOGLE_API_KEY];
this.reverseProxyUrl = options.reverseProxyUrl;
this.authHeader = options.authHeader;
/** @type {UsageMetadata | undefined} */
this.usage;
/** The key for the usage object's input tokens
* @type {string} */
this.inputTokensKey = 'input_tokens';
/** The key for the usage object's output tokens
* @type {string} */
this.outputTokensKey = 'output_tokens';
this.visionMode = VisionModes.generative;
/** @type {string} */
this.systemMessage;
if (options.skipSetOptions) {
return;
}
this.setOptions(options);
}
/* Google specific methods */
constructUrl() {
return `https://${endpointPrefix}/v1/projects/${this.project_id}/locations/${loc}/publishers/${publisher}/models/${this.modelOptions.model}:serverStreamingPredict`;
}
async getClient() {
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
jwtClient.authorize((err) => {
if (err) {
logger.error('jwtClient failed to authorize', err);
throw err;
}
});
return jwtClient;
}
async getAccessToken() {
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
return new Promise((resolve, reject) => {
jwtClient.authorize((err, tokens) => {
if (err) {
logger.error('jwtClient failed to authorize', err);
reject(err);
} else {
resolve(tokens.access_token);
}
});
});
}
/* Required Client methods */
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
// nested options aren't spread properly, so we need to do this manually
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
// now we can merge options
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
this.modelOptions = this.options.modelOptions || {};
this.options.attachments?.then((attachments) => this.checkVisionRequest(attachments));
/** @type {boolean} Whether using a "GenerativeAI" Model */
this.isGenerativeModel = /gemini|learnlm|gemma/.test(this.modelOptions.model);
this.maxContextTokens =
this.options.maxContextTokens ??
getModelMaxTokens(this.modelOptions.model, EModelEndpoint.google);
// The max prompt tokens is determined by the max context tokens minus the max response tokens.
// Earlier messages will be dropped until the prompt is within the limit.
this.maxResponseTokens = this.modelOptions.maxOutputTokens || settings.maxOutputTokens.default;
if (this.maxContextTokens > 32000) {
this.maxContextTokens = this.maxContextTokens - this.maxResponseTokens;
}
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
);
}
this.sender =
this.options.sender ??
getResponseSender({
model: this.modelOptions.model,
endpoint: EModelEndpoint.google,
modelLabel: this.options.modelLabel,
});
this.userLabel = this.options.userLabel || 'User';
this.modelLabel = this.options.modelLabel || 'Assistant';
if (this.options.reverseProxyUrl) {
this.completionsUrl = this.options.reverseProxyUrl;
} else {
this.completionsUrl = this.constructUrl();
}
let promptPrefix = (this.options.promptPrefix ?? '').trim();
if (typeof this.options.artifactsPrompt === 'string' && this.options.artifactsPrompt) {
promptPrefix = `${promptPrefix ?? ''}\n${this.options.artifactsPrompt}`.trim();
}
this.systemMessage = promptPrefix;
this.initializeClient();
return this;
}
/**
*
* Checks if the model is a vision model based on request attachments and sets the appropriate options:
* @param {MongoFile[]} attachments
*/
checkVisionRequest(attachments) {
/* Validation vision request */
this.defaultVisionModel =
this.options.visionModel ??
(!EXCLUDED_GENAI_MODELS.test(this.modelOptions.model)
? this.modelOptions.model
: 'gemini-pro-vision');
const availableModels = this.options.modelsConfig?.[EModelEndpoint.google];
this.isVisionModel = validateVisionModel({ model: this.modelOptions.model, availableModels });
if (
attachments &&
attachments.some((file) => file?.type && file?.type?.includes('image')) &&
availableModels?.includes(this.defaultVisionModel) &&
!this.isVisionModel
) {
this.modelOptions.model = this.defaultVisionModel;
this.isVisionModel = true;
}
if (this.isVisionModel && !attachments && this.modelOptions.model.includes('gemini-pro')) {
this.modelOptions.model = 'gemini-pro';
this.isVisionModel = false;
}
}
formatMessages() {
return ((message) => {
const msg = {
author: message?.author ?? (message.isCreatedByUser ? this.userLabel : this.modelLabel),
content: message?.content ?? message.text,
};
if (!message.image_urls?.length) {
return msg;
}
msg.content = (
!Array.isArray(msg.content)
? [
{
type: ContentTypes.TEXT,
[ContentTypes.TEXT]: msg.content,
},
]
: msg.content
).concat(message.image_urls);
return msg;
}).bind(this);
}
/**
* Formats messages for generative AI
* @param {TMessage[]} messages
* @returns
*/
async formatGenerativeMessages(messages) {
const formattedMessages = [];
const attachments = await this.options.attachments;
const latestMessage = { ...messages[messages.length - 1] };
const files = await this.addImageURLs(latestMessage, attachments, VisionModes.generative);
this.options.attachments = files;
messages[messages.length - 1] = latestMessage;
for (const _message of messages) {
const role = _message.isCreatedByUser ? this.userLabel : this.modelLabel;
const parts = [];
parts.push({ text: _message.text });
if (!_message.image_urls?.length) {
formattedMessages.push({ role, parts });
continue;
}
for (const images of _message.image_urls) {
if (images.inlineData) {
parts.push({ inlineData: images.inlineData });
}
}
formattedMessages.push({ role, parts });
}
return formattedMessages;
}
/**
*
* Adds image URLs to the message object and returns the files
*
* @param {TMessage[]} messages
* @param {MongoFile[]} files
* @returns {Promise<MongoFile[]>}
*/
async addImageURLs(message, attachments, mode = '') {
const { files, image_urls } = await encodeAndFormat(
this.options.req,
attachments,
EModelEndpoint.google,
mode,
);
message.image_urls = image_urls.length ? image_urls : undefined;
return files;
}
/**
* Builds the augmented prompt for attachments
* TODO: Add File API Support
* @param {TMessage[]} messages
*/
async buildAugmentedPrompt(messages = []) {
const attachments = await this.options.attachments;
const latestMessage = { ...messages[messages.length - 1] };
this.contextHandlers = createContextHandlers(this.options.req, latestMessage.text);
if (this.contextHandlers) {
for (const file of attachments) {
if (file.embedded) {
this.contextHandlers?.processFile(file);
continue;
}
if (file.metadata?.fileIdentifier) {
continue;
}
}
this.augmentedPrompt = await this.contextHandlers.createContext();
this.systemMessage = this.augmentedPrompt + this.systemMessage;
}
}
async buildVisionMessages(messages = [], parentMessageId) {
const attachments = await this.options.attachments;
const latestMessage = { ...messages[messages.length - 1] };
await this.buildAugmentedPrompt(messages);
const { prompt } = await this.buildMessagesPrompt(messages, parentMessageId);
const files = await this.addImageURLs(latestMessage, attachments);
this.options.attachments = files;
latestMessage.text = prompt;
const payload = {
instances: [
{
messages: [new HumanMessage(formatMessage({ message: latestMessage }))],
},
],
};
return { prompt: payload };
}
/** @param {TMessage[]} [messages=[]] */
async buildGenerativeMessages(messages = []) {
this.userLabel = 'user';
this.modelLabel = 'model';
const promises = [];
promises.push(await this.formatGenerativeMessages(messages));
promises.push(this.buildAugmentedPrompt(messages));
const [formattedMessages] = await Promise.all(promises);
return { prompt: formattedMessages };
}
/**
* @param {TMessage[]} [messages=[]]
* @param {string} [parentMessageId]
*/
async buildMessages(_messages = [], parentMessageId) {
if (!this.isGenerativeModel && !this.project_id) {
throw new Error('[GoogleClient] PaLM 2 and Codey models are no longer supported.');
}
if (this.systemMessage) {
const instructionsTokenCount = this.getTokenCount(this.systemMessage);
this.maxContextTokens = this.maxContextTokens - instructionsTokenCount;
if (this.maxContextTokens < 0) {
const info = `${instructionsTokenCount} / ${this.maxContextTokens}`;
const errorMessage = `{ "type": "${ErrorTypes.INPUT_LENGTH}", "info": "${info}" }`;
logger.warn(`Instructions token count exceeds max context (${info}).`);
throw new Error(errorMessage);
}
}
for (let i = 0; i < _messages.length; i++) {
const message = _messages[i];
if (!message.tokenCount) {
_messages[i].tokenCount = this.getTokenCountForMessage({
role: message.isCreatedByUser ? 'user' : 'assistant',
content: message.content ?? message.text,
});
}
}
const {
payload: messages,
tokenCountMap,
promptTokens,
} = await this.handleContextStrategy({
orderedMessages: _messages,
formattedMessages: _messages,
});
if (!this.project_id && !EXCLUDED_GENAI_MODELS.test(this.modelOptions.model)) {
const result = await this.buildGenerativeMessages(messages);
result.tokenCountMap = tokenCountMap;
result.promptTokens = promptTokens;
return result;
}
if (this.options.attachments && this.isGenerativeModel) {
const result = this.buildVisionMessages(messages, parentMessageId);
result.tokenCountMap = tokenCountMap;
result.promptTokens = promptTokens;
return result;
}
let payload = {
instances: [
{
messages: messages
.map(this.formatMessages())
.map((msg) => ({ ...msg, role: msg.author === 'User' ? 'user' : 'assistant' }))
.map((message) => formatMessage({ message, langChain: true })),
},
],
};
if (this.systemMessage) {
payload.instances[0].context = this.systemMessage;
}
logger.debug('[GoogleClient] buildMessages', payload);
return { prompt: payload, tokenCountMap, promptTokens };
}
async buildMessagesPrompt(messages, parentMessageId) {
const orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
});
logger.debug('[GoogleClient]', {
orderedMessages,
parentMessageId,
});
const formattedMessages = orderedMessages.map(this.formatMessages());
let lastAuthor = '';
let groupedMessages = [];
for (let message of formattedMessages) {
// If last author is not same as current author, add to new group
if (lastAuthor !== message.author) {
groupedMessages.push({
author: message.author,
content: [message.content],
});
lastAuthor = message.author;
// If same author, append content to the last group
} else {
groupedMessages[groupedMessages.length - 1].content.push(message.content);
}
}
let identityPrefix = '';
if (this.options.userLabel) {
identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
}
if (this.options.modelLabel) {
identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
}
let promptPrefix = (this.systemMessage ?? '').trim();
if (identityPrefix) {
promptPrefix = `${identityPrefix}${promptPrefix}`;
}
// Prompt AI to respond, empty if last message was from AI
let isEdited = lastAuthor === this.modelLabel;
const promptSuffix = isEdited ? '' : `${promptPrefix}\n\n${this.modelLabel}:\n`;
let currentTokenCount = isEdited
? this.getTokenCount(promptPrefix)
: this.getTokenCount(promptSuffix);
let promptBody = '';
const maxTokenCount = this.maxPromptTokens;
const context = [];
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
// Do this within a recursive async function so that it doesn't block the event loop for too long.
// Also, remove the next message when the message that puts us over the token limit is created by the user.
// Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
const nextMessage = {
remove: false,
tokenCount: 0,
messageString: '',
};
const buildPromptBody = async () => {
if (currentTokenCount < maxTokenCount && groupedMessages.length > 0) {
const message = groupedMessages.pop();
const isCreatedByUser = message.author === this.userLabel;
// Use promptPrefix if message is edited assistant'
const messagePrefix =
isCreatedByUser || !isEdited
? `\n\n${message.author}:`
: `${promptPrefix}\n\n${message.author}:`;
const messageString = `${messagePrefix}\n${message.content}\n`;
let newPromptBody = `${messageString}${promptBody}`;
context.unshift(message);
const tokenCountForMessage = this.getTokenCount(messageString);
const newTokenCount = currentTokenCount + tokenCountForMessage;
if (!isCreatedByUser) {
nextMessage.messageString = messageString;
nextMessage.tokenCount = tokenCountForMessage;
}
if (newTokenCount > maxTokenCount) {
if (!promptBody) {
// This is the first message, so we can't add it. Just throw an error.
throw new Error(
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
);
}
// Otherwise, ths message would put us over the token limit, so don't add it.
// if created by user, remove next message, otherwise remove only this message
if (isCreatedByUser) {
nextMessage.remove = true;
}
return false;
}
promptBody = newPromptBody;
currentTokenCount = newTokenCount;
// Switch off isEdited after using it for the first time
if (isEdited) {
isEdited = false;
}
// wait for next tick to avoid blocking the event loop
await new Promise((resolve) => setImmediate(resolve));
return buildPromptBody();
}
return true;
};
await buildPromptBody();
if (nextMessage.remove) {
promptBody = promptBody.replace(nextMessage.messageString, '');
currentTokenCount -= nextMessage.tokenCount;
context.shift();
}
let prompt = `${promptBody}${promptSuffix}`.trim();
// Add 2 tokens for metadata after all messages have been counted.
currentTokenCount += 2;
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
this.modelOptions.maxOutputTokens = Math.min(
this.maxContextTokens - currentTokenCount,
this.maxResponseTokens,
);
return { prompt, context };
}
createLLM(clientOptions) {
const model = clientOptions.modelName ?? clientOptions.model;
clientOptions.location = loc;
clientOptions.endpoint = endpointPrefix;
let requestOptions = null;
if (this.reverseProxyUrl) {
requestOptions = {
baseUrl: this.reverseProxyUrl,
};
if (this.authHeader) {
requestOptions.customHeaders = {
Authorization: `Bearer ${this.apiKey}`,
};
}
}
if (this.project_id != null) {
logger.debug('Creating VertexAI client');
this.visionMode = undefined;
clientOptions.streaming = true;
const client = new ChatVertexAI(clientOptions);
client.temperature = clientOptions.temperature;
client.topP = clientOptions.topP;
client.topK = clientOptions.topK;
client.topLogprobs = clientOptions.topLogprobs;
client.frequencyPenalty = clientOptions.frequencyPenalty;
client.presencePenalty = clientOptions.presencePenalty;
client.maxOutputTokens = clientOptions.maxOutputTokens;
return client;
} else if (!EXCLUDED_GENAI_MODELS.test(model)) {
logger.debug('Creating GenAI client');
return new GenAI(this.apiKey).getGenerativeModel({ model }, requestOptions);
}
logger.debug('Creating Chat Google Generative AI client');
return new ChatGoogleGenerativeAI({ ...clientOptions, apiKey: this.apiKey });
}
initializeClient() {
let clientOptions = { ...this.modelOptions };
if (this.project_id) {
clientOptions['authOptions'] = {
credentials: {
...this.serviceKey,
},
projectId: this.project_id,
};
}
if (this.isGenerativeModel && !this.project_id) {
clientOptions.modelName = clientOptions.model;
delete clientOptions.model;
}
this.client = this.createLLM(clientOptions);
return this.client;
}
async getCompletion(_payload, options = {}) {
const { onProgress, abortController } = options;
const safetySettings = getSafetySettings(this.modelOptions.model);
const streamRate = this.options.streamRate ?? Constants.DEFAULT_STREAM_RATE;
const modelName = this.modelOptions.modelName ?? this.modelOptions.model ?? '';
let reply = '';
/** @type {Error} */
let error;
try {
if (!EXCLUDED_GENAI_MODELS.test(modelName) && !this.project_id) {
/** @type {GenerativeModel} */
const client = this.client;
/** @type {GenerateContentRequest} */
const requestOptions = {
safetySettings,
contents: _payload,
generationConfig: googleGenConfigSchema.parse(this.modelOptions),
};
const promptPrefix = (this.systemMessage ?? '').trim();
if (promptPrefix.length) {
requestOptions.systemInstruction = {
parts: [
{
text: promptPrefix,
},
],
};
}
const delay = modelName.includes('flash') ? 8 : 15;
/** @type {GenAIUsageMetadata} */
let usageMetadata;
abortController.signal.addEventListener(
'abort',
() => {
logger.warn('[GoogleClient] Request was aborted', abortController.signal.reason);
},
{ once: true },
);
const result = await client.generateContentStream(requestOptions, {
signal: abortController.signal,
});
for await (const chunk of result.stream) {
usageMetadata = !usageMetadata
? chunk?.usageMetadata
: Object.assign(usageMetadata, chunk?.usageMetadata);
const chunkText = chunk.text();
await this.generateTextStream(chunkText, onProgress, {
delay,
});
reply += chunkText;
await sleep(streamRate);
}
if (usageMetadata) {
this.usage = {
input_tokens: usageMetadata.promptTokenCount,
output_tokens: usageMetadata.candidatesTokenCount,
};
}
return reply;
}
const { instances } = _payload;
const { messages: messages, context } = instances?.[0] ?? {};
if (!this.isVisionModel && context && messages?.length > 0) {
messages.unshift(new SystemMessage(context));
}
/** @type {import('@langchain/core/messages').AIMessageChunk['usage_metadata']} */
let usageMetadata;
/** @type {ChatVertexAI} */
const client = this.client;
const stream = await client.stream(messages, {
signal: abortController.signal,
streamUsage: true,
safetySettings,
});
let delay = this.options.streamRate || 8;
if (!this.options.streamRate) {
if (this.isGenerativeModel) {
delay = 15;
}
if (modelName.includes('flash')) {
delay = 5;
}
}
for await (const chunk of stream) {
if (chunk?.usage_metadata) {
const metadata = chunk.usage_metadata;
for (const key in metadata) {
if (Number.isNaN(metadata[key])) {
delete metadata[key];
}
}
usageMetadata = !usageMetadata ? metadata : concat(usageMetadata, metadata);
}
const chunkText = chunk?.content ?? '';
await this.generateTextStream(chunkText, onProgress, {
delay,
});
reply += chunkText;
}
if (usageMetadata) {
this.usage = usageMetadata;
}
} catch (e) {
error = e;
logger.error('[GoogleClient] There was an issue generating the completion', e);
}
if (error != null && reply === '') {
const errorMessage = `{ "type": "${ErrorTypes.GoogleError}", "info": "${
error.message ?? 'The Google provider failed to generate content, please contact the Admin.'
}" }`;
throw new Error(errorMessage);
}
return reply;
}
/**
* Get stream usage as returned by this client's API response.
* @returns {UsageMetadata} The stream usage object.
*/
getStreamUsage() {
return this.usage;
}
getMessageMapMethod() {
/**
* @param {TMessage} msg
*/
return (msg) => {
if (msg.text != null && msg.text && msg.text.startsWith(':::thinking')) {
msg.text = msg.text.replace(/:::thinking.*?:::/gs, '').trim();
} else if (msg.content != null) {
msg.text = parseTextParts(msg.content, true);
delete msg.content;
}
return msg;
};
}
/**
* Calculates the correct token count for the current user message based on the token count map and API usage.
* Edge case: If the calculation results in a negative value, it returns the original estimate.
* If revisiting a conversation with a chat history entirely composed of token estimates,
* the cumulative token count going forward should become more accurate as the conversation progresses.
* @param {Object} params - The parameters for the calculation.
* @param {Record<string, number>} params.tokenCountMap - A map of message IDs to their token counts.
* @param {string} params.currentMessageId - The ID of the current message to calculate.
* @param {UsageMetadata} params.usage - The usage object returned by the API.
* @returns {number} The correct token count for the current user message.
*/
calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage }) {
const originalEstimate = tokenCountMap[currentMessageId] || 0;
if (!usage || typeof usage.input_tokens !== 'number') {
return originalEstimate;
}
tokenCountMap[currentMessageId] = 0;
const totalTokensFromMap = Object.values(tokenCountMap).reduce((sum, count) => {
const numCount = Number(count);
return sum + (isNaN(numCount) ? 0 : numCount);
}, 0);
const totalInputTokens = usage.input_tokens ?? 0;
const currentMessageTokens = totalInputTokens - totalTokensFromMap;
return currentMessageTokens > 0 ? currentMessageTokens : originalEstimate;
}
/**
* @param {object} params
* @param {number} params.promptTokens
* @param {number} params.completionTokens
* @param {UsageMetadata} [params.usage]
* @param {string} [params.model]
* @param {string} [params.context='message']
* @returns {Promise<void>}
*/
async recordTokenUsage({ promptTokens, completionTokens, model, context = 'message' }) {
await spendTokens(
{
context,
user: this.user ?? this.options.req?.user?.id,
conversationId: this.conversationId,
model: model ?? this.modelOptions.model,
endpointTokenConfig: this.options.endpointTokenConfig,
},
{ promptTokens, completionTokens },
);
}
/**
* Stripped-down logic for generating a title. This uses the non-streaming APIs, since the user does not see titles streaming
*/
async titleChatCompletion(_payload, options = {}) {
let reply = '';
const { abortController } = options;
const model =
this.options.titleModel ?? this.modelOptions.modelName ?? this.modelOptions.model ?? '';
const safetySettings = getSafetySettings(model);
if (!EXCLUDED_GENAI_MODELS.test(model) && !this.project_id) {
logger.debug('Identified titling model as GenAI version');
/** @type {GenerativeModel} */
const client = this.client;
const requestOptions = {
contents: _payload,
safetySettings,
generationConfig: {
temperature: 0.5,
},
};
const result = await client.generateContent(requestOptions);
reply = result.response?.text();
return reply;
} else {
const { instances } = _payload;
const { messages } = instances?.[0] ?? {};
const titleResponse = await this.client.invoke(messages, {
signal: abortController.signal,
timeout: 7000,
safetySettings,
});
if (titleResponse.usage_metadata) {
await this.recordTokenUsage({
model,
promptTokens: titleResponse.usage_metadata.input_tokens,
completionTokens: titleResponse.usage_metadata.output_tokens,
context: 'title',
});
}
reply = titleResponse.content;
return reply;
}
}
async titleConvo({ text, responseText = '' }) {
let title = 'New Chat';
const convo = `||>User:
"${truncateText(text)}"
||>Response:
"${JSON.stringify(truncateText(responseText))}"`;
let { prompt: payload } = await this.buildMessages([
{
text: `Please generate ${titleInstruction}
${convo}
||>Title:`,
isCreatedByUser: true,
author: this.userLabel,
},
]);
try {
this.initializeClient();
title = await this.titleChatCompletion(payload, {
abortController: new AbortController(),
onProgress: () => {},
});
} catch (e) {
logger.error('[GoogleClient] There was an issue generating the title', e);
}
logger.debug(`Title response: ${title}`);
return title;
}
getSaveOptions() {
return {
endpointType: null,
artifacts: this.options.artifacts,
promptPrefix: this.options.promptPrefix,
maxContextTokens: this.options.maxContextTokens,
modelLabel: this.options.modelLabel,
iconURL: this.options.iconURL,
greeting: this.options.greeting,
spec: this.options.spec,
...this.modelOptions,
};
}
getBuildMessagesOptions() {
// logger.debug('GoogleClient doesn\'t use getBuildMessagesOptions');
}
async sendCompletion(payload, opts = {}) {
let reply = '';
reply = await this.getCompletion(payload, opts);
return reply.trim();
}
getEncoding() {
return 'cl100k_base';
}
async getVertexTokenCount(text) {
/** @type {ChatVertexAI} */
const client = this.client ?? this.initializeClient();
const connection = client.connection;
const gAuthClient = connection.client;
const tokenEndpoint = `https://${connection._endpoint}/${connection.apiVersion}/projects/${this.project_id}/locations/${connection._location}/publishers/google/models/${connection.model}/:countTokens`;
const result = await gAuthClient.request({
url: tokenEndpoint,
method: 'POST',
data: {
contents: [{ role: 'user', parts: [{ text }] }],
},
});
return result;
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
}
module.exports = GoogleClient;