LibreChat/api/server/controllers/agents/client.js
2025-09-03 23:10:33 -04:00

1187 lines
37 KiB
JavaScript

require('events').EventEmitter.defaultMaxListeners = 100;
const { logger } = require('@librechat/data-schemas');
const { DynamicStructuredTool } = require('@langchain/core/tools');
const { getBufferString, HumanMessage } = require('@langchain/core/messages');
const {
createRun,
Tokenizer,
checkAccess,
resolveHeaders,
getBalanceConfig,
memoryInstructions,
createMemoryProcessor,
} = require('@librechat/api');
const {
Callback,
Providers,
TitleMethod,
formatMessage,
formatAgentMessages,
getTokenCountForMessage,
createMetadataAggregator,
} = require('@librechat/agents');
const {
Constants,
Permissions,
VisionModes,
ContentTypes,
EModelEndpoint,
PermissionTypes,
isAgentsEndpoint,
AgentCapabilities,
bedrockInputSchema,
removeNullishValues,
} = require('librechat-data-provider');
const { initializeAgent } = require('~/server/services/Endpoints/agents/agent');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const { getFormattedMemories, deleteMemory, setMemory } = require('~/models');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const { getProviderConfig } = require('~/server/services/Endpoints');
const { createContextHandlers } = require('~/app/clients/prompts');
const { checkCapability } = require('~/server/services/Config');
const BaseClient = require('~/app/clients/BaseClient');
const { getRoleByName } = require('~/models/Role');
const { loadAgent } = require('~/models/Agent');
const { getMCPManager } = require('~/config');
const omitTitleOptions = new Set([
'stream',
'thinking',
'streaming',
'clientOptions',
'thinkingConfig',
'thinkingBudget',
'includeThoughts',
'maxOutputTokens',
'additionalModelRequestFields',
]);
/**
* @param {ServerRequest} req
* @param {Agent} agent
* @param {string} endpoint
*/
const payloadParser = ({ req, agent, endpoint }) => {
if (isAgentsEndpoint(endpoint)) {
return { model: undefined };
} else if (endpoint === EModelEndpoint.bedrock) {
const parsedValues = bedrockInputSchema.parse(agent.model_parameters);
if (parsedValues.thinking == null) {
parsedValues.thinking = false;
}
return parsedValues;
}
return req.body.endpointOption.model_parameters;
};
function createTokenCounter(encoding) {
return function (message) {
const countTokens = (text) => Tokenizer.getTokenCount(text, encoding);
return getTokenCountForMessage(message, countTokens);
};
}
function logToolError(graph, error, toolId) {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Tool Error',
error,
toolId,
);
}
class AgentClient extends BaseClient {
constructor(options = {}) {
super(null, options);
/** The current client class
* @type {string} */
this.clientName = EModelEndpoint.agents;
/** @type {'discard' | 'summarize'} */
this.contextStrategy = 'discard';
/** @deprecated @type {true} - Is a Chat Completion Request */
this.isChatCompletion = true;
/** @type {AgentRun} */
this.run;
const {
agentConfigs,
contentParts,
collectedUsage,
artifactPromises,
maxContextTokens,
...clientOptions
} = options;
this.agentConfigs = agentConfigs;
this.maxContextTokens = maxContextTokens;
/** @type {MessageContentComplex[]} */
this.contentParts = contentParts;
/** @type {Array<UsageMetadata>} */
this.collectedUsage = collectedUsage;
/** @type {ArtifactPromises} */
this.artifactPromises = artifactPromises;
/** @type {AgentClientOptions} */
this.options = Object.assign({ endpoint: options.endpoint }, clientOptions);
/** @type {string} */
this.model = this.options.agent.model_parameters.model;
/** The key for the usage object's input tokens
* @type {string} */
this.inputTokensKey = 'input_tokens';
/** The key for the usage object's output tokens
* @type {string} */
this.outputTokensKey = 'output_tokens';
/** @type {UsageMetadata} */
this.usage;
/** @type {Record<string, number>} */
this.indexTokenCountMap = {};
/** @type {(messages: BaseMessage[]) => Promise<void>} */
this.processMemory;
}
/**
* Returns the aggregated content parts for the current run.
* @returns {MessageContentComplex[]} */
getContentParts() {
return this.contentParts;
}
setOptions(options) {
logger.info('[api/server/controllers/agents/client.js] setOptions', options);
}
/**
* `AgentClient` is not opinionated about vision requests, so we don't do anything here
* @param {MongoFile[]} attachments
*/
checkVisionRequest() {}
getSaveOptions() {
// TODO:
// would need to be override settings; otherwise, model needs to be undefined
// model: this.override.model,
// instructions: this.override.instructions,
// additional_instructions: this.override.additional_instructions,
let runOptions = {};
try {
runOptions = payloadParser(this.options);
} catch (error) {
logger.error(
'[api/server/controllers/agents/client.js #getSaveOptions] Error parsing options',
error,
);
}
return removeNullishValues(
Object.assign(
{
endpoint: this.options.endpoint,
agent_id: this.options.agent.id,
modelLabel: this.options.modelLabel,
maxContextTokens: this.options.maxContextTokens,
resendFiles: this.options.resendFiles,
imageDetail: this.options.imageDetail,
spec: this.options.spec,
iconURL: this.options.iconURL,
},
// TODO: PARSE OPTIONS BY PROVIDER, MAY CONTAIN SENSITIVE DATA
runOptions,
),
);
}
getBuildMessagesOptions() {
return {
instructions: this.options.agent.instructions,
additional_instructions: this.options.agent.additional_instructions,
};
}
/**
*
* @param {TMessage} message
* @param {Array<MongoFile>} attachments
* @returns {Promise<Array<Partial<MongoFile>>>}
*/
async addImageURLs(message, attachments) {
const { files, text, image_urls } = await encodeAndFormat(
this.options.req,
attachments,
this.options.agent.provider,
VisionModes.agents,
);
message.image_urls = image_urls.length ? image_urls : undefined;
if (text && text.length) {
message.ocr = text;
}
return files;
}
async buildMessages(
messages,
parentMessageId,
{ instructions = null, additional_instructions = null },
opts,
) {
let orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
summary: this.shouldSummarize,
});
let payload;
/** @type {number | undefined} */
let promptTokens;
/** @type {string} */
let systemContent = [instructions ?? '', additional_instructions ?? '']
.filter(Boolean)
.join('\n')
.trim();
if (this.options.attachments) {
const attachments = await this.options.attachments;
if (this.message_file_map) {
this.message_file_map[orderedMessages[orderedMessages.length - 1].messageId] = attachments;
} else {
this.message_file_map = {
[orderedMessages[orderedMessages.length - 1].messageId]: attachments,
};
}
const files = await this.addImageURLs(
orderedMessages[orderedMessages.length - 1],
attachments,
);
this.options.attachments = files;
}
/** Note: Bedrock uses legacy RAG API handling */
if (this.message_file_map && !isAgentsEndpoint(this.options.endpoint)) {
this.contextHandlers = createContextHandlers(
this.options.req,
orderedMessages[orderedMessages.length - 1].text,
);
}
const formattedMessages = orderedMessages.map((message, i) => {
const formattedMessage = formatMessage({
message,
userName: this.options?.name,
assistantName: this.options?.modelLabel,
});
if (message.ocr && i !== orderedMessages.length - 1) {
if (typeof formattedMessage.content === 'string') {
formattedMessage.content = message.ocr + '\n' + formattedMessage.content;
} else {
const textPart = formattedMessage.content.find((part) => part.type === 'text');
textPart
? (textPart.text = message.ocr + '\n' + textPart.text)
: formattedMessage.content.unshift({ type: 'text', text: message.ocr });
}
} else if (message.ocr && i === orderedMessages.length - 1) {
systemContent = [systemContent, message.ocr].join('\n');
}
const needsTokenCount =
(this.contextStrategy && !orderedMessages[i].tokenCount) || message.ocr;
/* If tokens were never counted, or, is a Vision request and the message has files, count again */
if (needsTokenCount || (this.isVisionModel && (message.image_urls || message.files))) {
orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
}
/* If message has files, calculate image token cost */
if (this.message_file_map && this.message_file_map[message.messageId]) {
const attachments = this.message_file_map[message.messageId];
for (const file of attachments) {
if (file.embedded) {
this.contextHandlers?.processFile(file);
continue;
}
if (file.metadata?.fileIdentifier) {
continue;
}
// orderedMessages[i].tokenCount += this.calculateImageTokenCost({
// width: file.width,
// height: file.height,
// detail: this.options.imageDetail ?? ImageDetail.auto,
// });
}
}
return formattedMessage;
});
if (this.contextHandlers) {
this.augmentedPrompt = await this.contextHandlers.createContext();
systemContent = this.augmentedPrompt + systemContent;
}
// Inject MCP server instructions if available
const ephemeralAgent = this.options.req.body.ephemeralAgent;
let mcpServers = [];
// Check for ephemeral agent MCP servers
if (ephemeralAgent && ephemeralAgent.mcp && ephemeralAgent.mcp.length > 0) {
mcpServers = ephemeralAgent.mcp;
}
// Check for regular agent MCP tools
else if (this.options.agent && this.options.agent.tools) {
mcpServers = this.options.agent.tools
.filter(
(tool) =>
tool instanceof DynamicStructuredTool && tool.name.includes(Constants.mcp_delimiter),
)
.map((tool) => tool.name.split(Constants.mcp_delimiter).pop())
.filter(Boolean);
}
if (mcpServers.length > 0) {
try {
const mcpInstructions = getMCPManager().formatInstructionsForContext(mcpServers);
if (mcpInstructions) {
systemContent = [systemContent, mcpInstructions].filter(Boolean).join('\n\n');
logger.debug('[AgentClient] Injected MCP instructions for servers:', mcpServers);
}
} catch (error) {
logger.error('[AgentClient] Failed to inject MCP instructions:', error);
}
}
if (systemContent) {
this.options.agent.instructions = systemContent;
}
/** @type {Record<string, number> | undefined} */
let tokenCountMap;
if (this.contextStrategy) {
({ payload, promptTokens, tokenCountMap, messages } = await this.handleContextStrategy({
orderedMessages,
formattedMessages,
}));
}
for (let i = 0; i < messages.length; i++) {
this.indexTokenCountMap[i] = messages[i].tokenCount;
}
const result = {
tokenCountMap,
prompt: payload,
promptTokens,
messages,
};
if (promptTokens >= 0 && typeof opts?.getReqData === 'function') {
opts.getReqData({ promptTokens });
}
const withoutKeys = await this.useMemory();
if (withoutKeys) {
systemContent += `${memoryInstructions}\n\n# Existing memory about the user:\n${withoutKeys}`;
}
if (systemContent) {
this.options.agent.instructions = systemContent;
}
return result;
}
/**
* Creates a promise that resolves with the memory promise result or undefined after a timeout
* @param {Promise<(TAttachment | null)[] | undefined>} memoryPromise - The memory promise to await
* @param {number} timeoutMs - Timeout in milliseconds (default: 3000)
* @returns {Promise<(TAttachment | null)[] | undefined>}
*/
async awaitMemoryWithTimeout(memoryPromise, timeoutMs = 3000) {
if (!memoryPromise) {
return;
}
try {
const timeoutPromise = new Promise((_, reject) =>
setTimeout(() => reject(new Error('Memory processing timeout')), timeoutMs),
);
const attachments = await Promise.race([memoryPromise, timeoutPromise]);
return attachments;
} catch (error) {
if (error.message === 'Memory processing timeout') {
logger.warn('[AgentClient] Memory processing timed out after 3 seconds');
} else {
logger.error('[AgentClient] Error processing memory:', error);
}
return;
}
}
/**
* @returns {Promise<string | undefined>}
*/
async useMemory() {
const user = this.options.req.user;
if (user.personalization?.memories === false) {
return;
}
const hasAccess = await checkAccess({
user,
permissionType: PermissionTypes.MEMORIES,
permissions: [Permissions.USE],
getRoleByName,
});
if (!hasAccess) {
logger.debug(
`[api/server/controllers/agents/client.js #useMemory] User ${user.id} does not have USE permission for memories`,
);
return;
}
const appConfig = this.options.req.config;
const memoryConfig = appConfig.memory;
if (!memoryConfig || memoryConfig.disabled === true) {
return;
}
/** @type {Agent} */
let prelimAgent;
const allowedProviders = new Set(
appConfig?.endpoints?.[EModelEndpoint.agents]?.allowedProviders,
);
try {
if (memoryConfig.agent?.id != null && memoryConfig.agent.id !== this.options.agent.id) {
prelimAgent = await loadAgent({
req: this.options.req,
agent_id: memoryConfig.agent.id,
endpoint: EModelEndpoint.agents,
});
} else if (
memoryConfig.agent?.id == null &&
memoryConfig.agent?.model != null &&
memoryConfig.agent?.provider != null
) {
prelimAgent = { id: Constants.EPHEMERAL_AGENT_ID, ...memoryConfig.agent };
}
} catch (error) {
logger.error(
'[api/server/controllers/agents/client.js #useMemory] Error loading agent for memory',
error,
);
}
const agent = await initializeAgent({
req: this.options.req,
res: this.options.res,
agent: prelimAgent,
allowedProviders,
endpointOption: {
endpoint:
prelimAgent.id !== Constants.EPHEMERAL_AGENT_ID
? EModelEndpoint.agents
: memoryConfig.agent?.provider,
},
});
if (!agent) {
logger.warn(
'[api/server/controllers/agents/client.js #useMemory] No agent found for memory',
memoryConfig,
);
return;
}
const llmConfig = Object.assign(
{
provider: agent.provider,
model: agent.model,
},
agent.model_parameters,
);
/** @type {import('@librechat/api').MemoryConfig} */
const config = {
validKeys: memoryConfig.validKeys,
instructions: agent.instructions,
llmConfig,
tokenLimit: memoryConfig.tokenLimit,
};
const userId = this.options.req.user.id + '';
const messageId = this.responseMessageId + '';
const conversationId = this.conversationId + '';
const [withoutKeys, processMemory] = await createMemoryProcessor({
userId,
config,
messageId,
conversationId,
memoryMethods: {
setMemory,
deleteMemory,
getFormattedMemories,
},
res: this.options.res,
});
this.processMemory = processMemory;
return withoutKeys;
}
/**
* Filters out image URLs from message content
* @param {BaseMessage} message - The message to filter
* @returns {BaseMessage} - A new message with image URLs removed
*/
filterImageUrls(message) {
if (!message.content || typeof message.content === 'string') {
return message;
}
if (Array.isArray(message.content)) {
const filteredContent = message.content.filter(
(part) => part.type !== ContentTypes.IMAGE_URL,
);
if (filteredContent.length === 1 && filteredContent[0].type === ContentTypes.TEXT) {
const MessageClass = message.constructor;
return new MessageClass({
content: filteredContent[0].text,
additional_kwargs: message.additional_kwargs,
});
}
const MessageClass = message.constructor;
return new MessageClass({
content: filteredContent,
additional_kwargs: message.additional_kwargs,
});
}
return message;
}
/**
* @param {BaseMessage[]} messages
* @returns {Promise<void | (TAttachment | null)[]>}
*/
async runMemory(messages) {
try {
if (this.processMemory == null) {
return;
}
const appConfig = this.options.req.config;
const memoryConfig = appConfig.memory;
const messageWindowSize = memoryConfig?.messageWindowSize ?? 5;
let messagesToProcess = [...messages];
if (messages.length > messageWindowSize) {
for (let i = messages.length - messageWindowSize; i >= 0; i--) {
const potentialWindow = messages.slice(i, i + messageWindowSize);
if (potentialWindow[0]?.role === 'user') {
messagesToProcess = [...potentialWindow];
break;
}
}
if (messagesToProcess.length === messages.length) {
messagesToProcess = [...messages.slice(-messageWindowSize)];
}
}
const filteredMessages = messagesToProcess.map((msg) => this.filterImageUrls(msg));
const bufferString = getBufferString(filteredMessages);
const bufferMessage = new HumanMessage(`# Current Chat:\n\n${bufferString}`);
return await this.processMemory([bufferMessage]);
} catch (error) {
logger.error('Memory Agent failed to process memory', error);
}
}
/** @type {sendCompletion} */
async sendCompletion(payload, opts = {}) {
await this.chatCompletion({
payload,
onProgress: opts.onProgress,
userMCPAuthMap: opts.userMCPAuthMap,
abortController: opts.abortController,
});
return this.contentParts;
}
/**
* @param {Object} params
* @param {string} [params.model]
* @param {string} [params.context='message']
* @param {AppConfig['balance']} [params.balance]
* @param {UsageMetadata[]} [params.collectedUsage=this.collectedUsage]
*/
async recordCollectedUsage({
model,
balance,
context = 'message',
collectedUsage = this.collectedUsage,
}) {
if (!collectedUsage || !collectedUsage.length) {
return;
}
const input_tokens =
(collectedUsage[0]?.input_tokens || 0) +
(Number(collectedUsage[0]?.input_token_details?.cache_creation) || 0) +
(Number(collectedUsage[0]?.input_token_details?.cache_read) || 0);
let output_tokens = 0;
let previousTokens = input_tokens; // Start with original input
for (let i = 0; i < collectedUsage.length; i++) {
const usage = collectedUsage[i];
if (!usage) {
continue;
}
const cache_creation = Number(usage.input_token_details?.cache_creation) || 0;
const cache_read = Number(usage.input_token_details?.cache_read) || 0;
const txMetadata = {
context,
balance,
conversationId: this.conversationId,
user: this.user ?? this.options.req.user?.id,
endpointTokenConfig: this.options.endpointTokenConfig,
model: usage.model ?? model ?? this.model ?? this.options.agent.model_parameters.model,
};
if (i > 0) {
// Count new tokens generated (input_tokens minus previous accumulated tokens)
output_tokens +=
(Number(usage.input_tokens) || 0) + cache_creation + cache_read - previousTokens;
}
// Add this message's output tokens
output_tokens += Number(usage.output_tokens) || 0;
// Update previousTokens to include this message's output
previousTokens += Number(usage.output_tokens) || 0;
if (cache_creation > 0 || cache_read > 0) {
spendStructuredTokens(txMetadata, {
promptTokens: {
input: usage.input_tokens,
write: cache_creation,
read: cache_read,
},
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error(
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending structured tokens',
err,
);
});
continue;
}
spendTokens(txMetadata, {
promptTokens: usage.input_tokens,
completionTokens: usage.output_tokens,
}).catch((err) => {
logger.error(
'[api/server/controllers/agents/client.js #recordCollectedUsage] Error spending tokens',
err,
);
});
}
this.usage = {
input_tokens,
output_tokens,
};
}
/**
* Get stream usage as returned by this client's API response.
* @returns {UsageMetadata} The stream usage object.
*/
getStreamUsage() {
return this.usage;
}
/**
* @param {TMessage} responseMessage
* @returns {number}
*/
getTokenCountForResponse({ content }) {
return this.getTokenCountForMessage({
role: 'assistant',
content,
});
}
/**
* Calculates the correct token count for the current user message based on the token count map and API usage.
* Edge case: If the calculation results in a negative value, it returns the original estimate.
* If revisiting a conversation with a chat history entirely composed of token estimates,
* the cumulative token count going forward should become more accurate as the conversation progresses.
* @param {Object} params - The parameters for the calculation.
* @param {Record<string, number>} params.tokenCountMap - A map of message IDs to their token counts.
* @param {string} params.currentMessageId - The ID of the current message to calculate.
* @param {OpenAIUsageMetadata} params.usage - The usage object returned by the API.
* @returns {number} The correct token count for the current user message.
*/
calculateCurrentTokenCount({ tokenCountMap, currentMessageId, usage }) {
const originalEstimate = tokenCountMap[currentMessageId] || 0;
if (!usage || typeof usage[this.inputTokensKey] !== 'number') {
return originalEstimate;
}
tokenCountMap[currentMessageId] = 0;
const totalTokensFromMap = Object.values(tokenCountMap).reduce((sum, count) => {
const numCount = Number(count);
return sum + (isNaN(numCount) ? 0 : numCount);
}, 0);
const totalInputTokens = usage[this.inputTokensKey] ?? 0;
const currentMessageTokens = totalInputTokens - totalTokensFromMap;
return currentMessageTokens > 0 ? currentMessageTokens : originalEstimate;
}
/**
* @param {object} params
* @param {string | ChatCompletionMessageParam[]} params.payload
* @param {Record<string, Record<string, string>>} [params.userMCPAuthMap]
* @param {AbortController} [params.abortController]
*/
async chatCompletion({ payload, userMCPAuthMap, abortController = null }) {
/** @type {Partial<GraphRunnableConfig>} */
let config;
/** @type {ReturnType<createRun>} */
let run;
/** @type {Promise<(TAttachment | null)[] | undefined>} */
let memoryPromise;
try {
if (!abortController) {
abortController = new AbortController();
}
const appConfig = this.options.req.config;
/** @type {AppConfig['endpoints']['agents']} */
const agentsEConfig = appConfig.endpoints?.[EModelEndpoint.agents];
config = {
configurable: {
thread_id: this.conversationId,
last_agent_index: this.agentConfigs?.size ?? 0,
user_id: this.user ?? this.options.req.user?.id,
hide_sequential_outputs: this.options.agent.hide_sequential_outputs,
requestBody: {
messageId: this.responseMessageId,
conversationId: this.conversationId,
parentMessageId: this.parentMessageId,
},
user: this.options.req.user,
},
recursionLimit: agentsEConfig?.recursionLimit ?? 25,
signal: abortController.signal,
streamMode: 'values',
version: 'v2',
};
const toolSet = new Set((this.options.agent.tools ?? []).map((tool) => tool && tool.name));
let { messages: initialMessages, indexTokenCountMap } = formatAgentMessages(
payload,
this.indexTokenCountMap,
toolSet,
);
/**
* @param {BaseMessage[]} messages
*/
const runAgents = async (messages) => {
const agents = [this.options.agent];
if (
this.agentConfigs &&
this.agentConfigs.size > 0 &&
((this.options.agent.edges?.length ?? 0) > 0 ||
(await checkCapability(this.options.req, AgentCapabilities.chain)))
) {
agents.push(...this.agentConfigs.values());
}
if (agents[0].recursion_limit && typeof agents[0].recursion_limit === 'number') {
config.recursionLimit = agents[0].recursion_limit;
}
if (
agentsEConfig?.maxRecursionLimit &&
config.recursionLimit > agentsEConfig?.maxRecursionLimit
) {
config.recursionLimit = agentsEConfig?.maxRecursionLimit;
}
// TODO: needs to be added as part of AgentContext initialization
// const noSystemModelRegex = [/\b(o1-preview|o1-mini|amazon\.titan-text)\b/gi];
// const noSystemMessages = noSystemModelRegex.some((regex) =>
// agent.model_parameters.model.match(regex),
// );
// if (noSystemMessages === true && systemContent?.length) {
// const latestMessageContent = _messages.pop().content;
// if (typeof latestMessageContent !== 'string') {
// latestMessageContent[0].text = [systemContent, latestMessageContent[0].text].join('\n');
// _messages.push(new HumanMessage({ content: latestMessageContent }));
// } else {
// const text = [systemContent, latestMessageContent].join('\n');
// _messages.push(new HumanMessage(text));
// }
// }
// let messages = _messages;
// if (agent.useLegacyContent === true) {
// messages = formatContentStrings(messages);
// }
// if (
// agent.model_parameters?.clientOptions?.defaultHeaders?.['anthropic-beta']?.includes(
// 'prompt-caching',
// )
// ) {
// messages = addCacheControl(messages);
// }
memoryPromise = this.runMemory(messages);
run = await createRun({
agents,
indexTokenCountMap,
runId: this.responseMessageId,
signal: abortController.signal,
customHandlers: this.options.eventHandlers,
requestBody: config.configurable.requestBody,
tokenCounter: createTokenCounter(this.getEncoding()),
});
if (!run) {
throw new Error('Failed to create run');
}
this.run = run;
if (userMCPAuthMap != null) {
config.configurable.userMCPAuthMap = userMCPAuthMap;
}
await run.processStream({ messages }, config, {
callbacks: {
[Callback.TOOL_ERROR]: logToolError,
},
});
config.signal = null;
};
await runAgents(initialMessages);
let finalContentStart = this.contentParts.length;
/** Note: not implemented */
if (config.configurable.hide_sequential_outputs !== true) {
finalContentStart = 0;
}
this.contentParts = this.contentParts.filter((part, index) => {
// Include parts that are either:
// 1. At or after the finalContentStart index
// 2. Of type tool_call
// 3. Have tool_call_ids property
return (
index >= finalContentStart || part.type === ContentTypes.TOOL_CALL || part.tool_call_ids
);
});
try {
const attachments = await this.awaitMemoryWithTimeout(memoryPromise);
if (attachments && attachments.length > 0) {
this.artifactPromises.push(...attachments);
}
const balanceConfig = getBalanceConfig(appConfig);
await this.recordCollectedUsage({ context: 'message', balance: balanceConfig });
} catch (err) {
logger.error(
'[api/server/controllers/agents/client.js #chatCompletion] Error recording collected usage',
err,
);
}
} catch (err) {
const attachments = await this.awaitMemoryWithTimeout(memoryPromise);
if (attachments && attachments.length > 0) {
this.artifactPromises.push(...attachments);
}
logger.error(
'[api/server/controllers/agents/client.js #sendCompletion] Operation aborted',
err,
);
if (!abortController.signal.aborted) {
logger.error(
'[api/server/controllers/agents/client.js #sendCompletion] Unhandled error type',
err,
);
this.contentParts.push({
type: ContentTypes.ERROR,
[ContentTypes.ERROR]: `An error occurred while processing the request${err?.message ? `: ${err.message}` : ''}`,
});
}
}
}
/**
*
* @param {Object} params
* @param {string} params.text
* @param {string} params.conversationId
*/
async titleConvo({ text, abortController }) {
if (!this.run) {
throw new Error('Run not initialized');
}
const { handleLLMEnd, collected: collectedMetadata } = createMetadataAggregator();
const { req, res, agent } = this.options;
const appConfig = req.config;
let endpoint = agent.endpoint;
/** @type {import('@librechat/agents').ClientOptions} */
let clientOptions = {
model: agent.model || agent.model_parameters.model,
};
let titleProviderConfig = getProviderConfig({ provider: endpoint, appConfig });
/** @type {TEndpoint | undefined} */
const endpointConfig =
appConfig.endpoints?.all ??
appConfig.endpoints?.[endpoint] ??
titleProviderConfig.customEndpointConfig;
if (!endpointConfig) {
logger.warn(
'[api/server/controllers/agents/client.js #titleConvo] Error getting endpoint config',
);
}
if (endpointConfig?.titleEndpoint && endpointConfig.titleEndpoint !== endpoint) {
try {
titleProviderConfig = getProviderConfig({
provider: endpointConfig.titleEndpoint,
appConfig,
});
endpoint = endpointConfig.titleEndpoint;
} catch (error) {
logger.warn(
`[api/server/controllers/agents/client.js #titleConvo] Error getting title endpoint config for ${endpointConfig.titleEndpoint}, falling back to default`,
error,
);
// Fall back to original provider config
endpoint = agent.endpoint;
titleProviderConfig = getProviderConfig({ provider: endpoint, appConfig });
}
}
if (
endpointConfig &&
endpointConfig.titleModel &&
endpointConfig.titleModel !== Constants.CURRENT_MODEL
) {
clientOptions.model = endpointConfig.titleModel;
}
const options = await titleProviderConfig.getOptions({
req,
res,
optionsOnly: true,
overrideEndpoint: endpoint,
overrideModel: clientOptions.model,
endpointOption: { model_parameters: clientOptions },
});
let provider = options.provider ?? titleProviderConfig.overrideProvider ?? agent.provider;
if (
endpoint === EModelEndpoint.azureOpenAI &&
options.llmConfig?.azureOpenAIApiInstanceName == null
) {
provider = Providers.OPENAI;
} else if (
endpoint === EModelEndpoint.azureOpenAI &&
options.llmConfig?.azureOpenAIApiInstanceName != null &&
provider !== Providers.AZURE
) {
provider = Providers.AZURE;
}
/** @type {import('@librechat/agents').ClientOptions} */
clientOptions = { ...options.llmConfig };
if (options.configOptions) {
clientOptions.configuration = options.configOptions;
}
if (clientOptions.maxTokens != null) {
delete clientOptions.maxTokens;
}
if (clientOptions?.modelKwargs?.max_completion_tokens != null) {
delete clientOptions.modelKwargs.max_completion_tokens;
}
if (clientOptions?.modelKwargs?.max_output_tokens != null) {
delete clientOptions.modelKwargs.max_output_tokens;
}
clientOptions = Object.assign(
Object.fromEntries(
Object.entries(clientOptions).filter(([key]) => !omitTitleOptions.has(key)),
),
);
if (
provider === Providers.GOOGLE &&
(endpointConfig?.titleMethod === TitleMethod.FUNCTIONS ||
endpointConfig?.titleMethod === TitleMethod.STRUCTURED)
) {
clientOptions.json = true;
}
/** Resolve request-based headers for Custom Endpoints. Note: if this is added to
* non-custom endpoints, needs consideration of varying provider header configs.
*/
if (clientOptions?.configuration?.defaultHeaders != null) {
clientOptions.configuration.defaultHeaders = resolveHeaders({
headers: clientOptions.configuration.defaultHeaders,
body: {
messageId: this.responseMessageId,
conversationId: this.conversationId,
parentMessageId: this.parentMessageId,
},
});
}
try {
const titleResult = await this.run.generateTitle({
provider,
clientOptions,
inputText: text,
contentParts: this.contentParts,
titleMethod: endpointConfig?.titleMethod,
titlePrompt: endpointConfig?.titlePrompt,
titlePromptTemplate: endpointConfig?.titlePromptTemplate,
chainOptions: {
signal: abortController.signal,
callbacks: [
{
handleLLMEnd,
},
],
},
});
const collectedUsage = collectedMetadata.map((item) => {
let input_tokens, output_tokens;
if (item.usage) {
input_tokens =
item.usage.prompt_tokens || item.usage.input_tokens || item.usage.inputTokens;
output_tokens =
item.usage.completion_tokens || item.usage.output_tokens || item.usage.outputTokens;
} else if (item.tokenUsage) {
input_tokens = item.tokenUsage.promptTokens;
output_tokens = item.tokenUsage.completionTokens;
}
return {
input_tokens: input_tokens,
output_tokens: output_tokens,
};
});
const balanceConfig = getBalanceConfig(appConfig);
await this.recordCollectedUsage({
collectedUsage,
context: 'title',
model: clientOptions.model,
balance: balanceConfig,
}).catch((err) => {
logger.error(
'[api/server/controllers/agents/client.js #titleConvo] Error recording collected usage',
err,
);
});
return titleResult.title;
} catch (err) {
logger.error('[api/server/controllers/agents/client.js #titleConvo] Error', err);
return;
}
}
/**
* @param {object} params
* @param {number} params.promptTokens
* @param {number} params.completionTokens
* @param {string} [params.model]
* @param {OpenAIUsageMetadata} [params.usage]
* @param {AppConfig['balance']} [params.balance]
* @param {string} [params.context='message']
* @returns {Promise<void>}
*/
async recordTokenUsage({
model,
usage,
balance,
promptTokens,
completionTokens,
context = 'message',
}) {
try {
await spendTokens(
{
model,
context,
balance,
conversationId: this.conversationId,
user: this.user ?? this.options.req.user?.id,
endpointTokenConfig: this.options.endpointTokenConfig,
},
{ promptTokens, completionTokens },
);
if (
usage &&
typeof usage === 'object' &&
'reasoning_tokens' in usage &&
typeof usage.reasoning_tokens === 'number'
) {
await spendTokens(
{
model,
balance,
context: 'reasoning',
conversationId: this.conversationId,
user: this.user ?? this.options.req.user?.id,
endpointTokenConfig: this.options.endpointTokenConfig,
},
{ completionTokens: usage.reasoning_tokens },
);
}
} catch (error) {
logger.error(
'[api/server/controllers/agents/client.js #recordTokenUsage] Error recording token usage',
error,
);
}
}
getEncoding() {
return 'o200k_base';
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
}
module.exports = AgentClient;