mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 06:00:56 +02:00

* refactor(Chains/llms): allow passing callbacks * refactor(BaseClient): accurately count completion tokens as generation only * refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM * wip: summary prompt tokens * refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end wip: draft out relevant providers and variables for token tracing * refactor(createLLM): make streaming prop false by default * chore: remove use of getTokenCountForResponse * refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace * chore: remove passing of streaming prop, also console log useful vars for tracing * feat: formatFromLangChain helper function to count tokens for ChatModelStart * refactor(initializeLLM): add role for LLM tracing * chore(formatFromLangChain): update JSDoc * feat(formatMessages): formats langChain messages into OpenAI payload format * chore: install openai-chat-tokens * refactor(formatMessage): optimize conditional langChain logic fix(formatFromLangChain): fix destructuring * feat: accurate prompt tokens for ChatModelStart before generation * refactor(handleChatModelStart): move to callbacks dir, use factory function * refactor(initializeLLM): rename 'role' to 'context' * feat(Balance/Transaction): new schema/models for tracking token spend refactor(Key): factor out model export to separate file * refactor(initializeClient): add req,res objects to client options * feat: add-balance script to add to an existing users' token balance refactor(Transaction): use multiplier map/function, return balance update * refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match * refactor(Tx): add fair fallback value multiplier incase the config result is undefined * refactor(Balance): rename 'tokens' to 'tokenCredits' * feat: balance check, add tx.js for new tx-related methods and tests * chore(summaryPrompts): update prompt token count * refactor(callbacks): pass req, res wip: check balance * refactor(Tx): make convoId a String type, fix(calculateTokenValue) * refactor(BaseClient): add conversationId as client prop when assigned * feat(RunManager): track LLM runs with manager, track token spend from LLM, refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls * feat(spendTokens): helper to spend prompt/completion tokens * feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds refactor(Balance): static check method to return object instead of boolean now wip(OpenAIClient): implement use of checkBalance * refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large refactor(OpenAIClient): add checkBalance refactor(createStartHandler): add checkBalance * chore: remove prompt and completion token logging from route handler * chore(spendTokens): add JSDoc * feat(logTokenCost): record transactions for basic api calls * chore(ask/edit): invoke getResponseSender only once per API call * refactor(ask/edit): pass promptTokens to getIds and include in abort data * refactor(getIds -> getReqData): rename function * refactor(Tx): increase value if incomplete message * feat: record tokenUsage when message is aborted * refactor: subtract tokens when payload includes function_call * refactor: add namespace for token_balance * fix(spendTokens): only execute if corresponding token type amounts are defined * refactor(checkBalance): throws Error if not enough token credits * refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run' * fix(abortMiddleware): circular dependency, and default to empty string for completionTokens * fix: properly cancel title requests when there isn't enough tokens to generate * feat(predictNewSummary): custom chain for summaries to allow signal passing refactor(summaryBuffer): use new custom chain * feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError * refactor(createStartHandler): if summary, add error details to runs * fix(OpenAIClient): support aborting from summarization & showing error to user refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer * refactor(logTokenCost -> recordTokenUsage): rename * refactor(checkBalance): include promptTokens in errorMessage * refactor(checkBalance/spendTokens): move to models dir * fix(createLanguageChain): correctly pass config * refactor(initializeLLM/title): add tokenBuffer of 150 for balance check * refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called * refactor(createStartHandler): add error to run if context is plugins as well * refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run * refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic * chore: use absolute equality for addTitle condition * refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional * style: icon changes to match official * fix(BaseClient): getTokenCountForResponse -> getTokenCount * fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc * refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled * fix(e2e/cleanUp): cleanup new collections, import all model methods from index * fix(config/add-balance): add uncaughtException listener * fix: circular dependency * refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance * fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped * fix(createStartHandler): correct condition for generations * chore: bump postcss due to moderate severity vulnerability * chore: bump zod due to low severity vulnerability * chore: bump openai & data-provider version * feat(types): OpenAI Message types * chore: update bun lockfile * refactor(CodeBlock): add error block formatting * refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON * chore(logViolation): delete user_id after error is logged * refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex * fix(DALL-E): use latest openai SDK * chore: reorganize imports, fix type issue * feat(server): add balance route * fix(api/models): add auth * feat(data-provider): /api/balance query * feat: show balance if checking is enabled, refetch on final message or error * chore: update docs, .env.example with token_usage info, add balance script command * fix(Balance): fallback to empty obj for balance query * style: slight adjustment of balance element * docs(token_usage): add PR notes
182 lines
5 KiB
JavaScript
182 lines
5 KiB
JavaScript
require('dotenv').config();
|
|
const { z } = require('zod');
|
|
const fs = require('fs');
|
|
const yaml = require('js-yaml');
|
|
const path = require('path');
|
|
const { DynamicStructuredTool } = require('langchain/tools');
|
|
const { createOpenAPIChain } = require('langchain/chains');
|
|
const { ChatPromptTemplate, HumanMessagePromptTemplate } = require('langchain/prompts');
|
|
|
|
function addLinePrefix(text, prefix = '// ') {
|
|
return text
|
|
.split('\n')
|
|
.map((line) => prefix + line)
|
|
.join('\n');
|
|
}
|
|
|
|
function createPrompt(name, functions) {
|
|
const prefix = `// The ${name} tool has the following functions. Determine the desired or most optimal function for the user's query:`;
|
|
const functionDescriptions = functions
|
|
.map((func) => `// - ${func.name}: ${func.description}`)
|
|
.join('\n');
|
|
return `${prefix}\n${functionDescriptions}
|
|
// The user's message will be passed as the function's query.
|
|
// Always provide the function name as such: {{"func": "function_name"}}`;
|
|
}
|
|
|
|
const AuthBearer = z
|
|
.object({
|
|
type: z.string().includes('service_http'),
|
|
authorization_type: z.string().includes('bearer'),
|
|
verification_tokens: z.object({
|
|
openai: z.string(),
|
|
}),
|
|
})
|
|
.catch(() => false);
|
|
|
|
const AuthDefinition = z
|
|
.object({
|
|
type: z.string(),
|
|
authorization_type: z.string(),
|
|
verification_tokens: z.object({
|
|
openai: z.string(),
|
|
}),
|
|
})
|
|
.catch(() => false);
|
|
|
|
async function readSpecFile(filePath) {
|
|
try {
|
|
const fileContents = await fs.promises.readFile(filePath, 'utf8');
|
|
if (path.extname(filePath) === '.json') {
|
|
return JSON.parse(fileContents);
|
|
}
|
|
return yaml.load(fileContents);
|
|
} catch (e) {
|
|
console.error(e);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
async function getSpec(url) {
|
|
const RegularUrl = z
|
|
.string()
|
|
.url()
|
|
.catch(() => false);
|
|
|
|
if (RegularUrl.parse(url) && path.extname(url) === '.json') {
|
|
const response = await fetch(url);
|
|
return await response.json();
|
|
}
|
|
|
|
const ValidSpecPath = z
|
|
.string()
|
|
.url()
|
|
.catch(async () => {
|
|
const spec = path.join(__dirname, '..', '.well-known', 'openapi', url);
|
|
if (!fs.existsSync(spec)) {
|
|
return false;
|
|
}
|
|
|
|
return await readSpecFile(spec);
|
|
});
|
|
|
|
return ValidSpecPath.parse(url);
|
|
}
|
|
|
|
async function createOpenAPIPlugin({ data, llm, user, message, memory, signal, verbose = false }) {
|
|
let spec;
|
|
try {
|
|
spec = await getSpec(data.api.url, verbose);
|
|
} catch (error) {
|
|
verbose && console.debug('getSpec error', error);
|
|
return null;
|
|
}
|
|
|
|
if (!spec) {
|
|
verbose && console.debug('No spec found');
|
|
return null;
|
|
}
|
|
|
|
const headers = {};
|
|
const { auth, name_for_model, description_for_model, description_for_human } = data;
|
|
if (auth && AuthDefinition.parse(auth)) {
|
|
verbose && console.debug('auth detected', auth);
|
|
const { openai } = auth.verification_tokens;
|
|
if (AuthBearer.parse(auth)) {
|
|
headers.authorization = `Bearer ${openai}`;
|
|
verbose && console.debug('added auth bearer', headers);
|
|
}
|
|
}
|
|
|
|
const chainOptions = {
|
|
llm,
|
|
verbose,
|
|
};
|
|
|
|
if (data.headers && data.headers['librechat_user_id']) {
|
|
verbose && console.debug('id detected', headers);
|
|
headers[data.headers['librechat_user_id']] = user;
|
|
}
|
|
|
|
if (Object.keys(headers).length > 0) {
|
|
verbose && console.debug('headers detected', headers);
|
|
chainOptions.headers = headers;
|
|
}
|
|
|
|
if (data.params) {
|
|
verbose && console.debug('params detected', data.params);
|
|
chainOptions.params = data.params;
|
|
}
|
|
|
|
let history = '';
|
|
if (memory) {
|
|
verbose && console.debug('openAPI chain: memory detected', memory);
|
|
const { history: chat_history } = await memory.loadMemoryVariables({});
|
|
history = chat_history?.length > 0 ? `\n\n## Chat History:\n${chat_history}\n` : '';
|
|
}
|
|
|
|
chainOptions.prompt = ChatPromptTemplate.fromMessages([
|
|
HumanMessagePromptTemplate.fromTemplate(
|
|
`# Use the provided API's to respond to this query:\n\n{query}\n\n## Instructions:\n${addLinePrefix(
|
|
description_for_model,
|
|
)}${history}`,
|
|
),
|
|
]);
|
|
|
|
const chain = await createOpenAPIChain(spec, chainOptions);
|
|
|
|
const { functions } = chain.chains[0].lc_kwargs.llmKwargs;
|
|
|
|
return new DynamicStructuredTool({
|
|
name: name_for_model,
|
|
description_for_model: `${addLinePrefix(description_for_human)}${createPrompt(
|
|
name_for_model,
|
|
functions,
|
|
)}`,
|
|
description: `${description_for_human}`,
|
|
schema: z.object({
|
|
func: z
|
|
.string()
|
|
.describe(
|
|
`The function to invoke. The functions available are: ${functions
|
|
.map((func) => func.name)
|
|
.join(', ')}`,
|
|
),
|
|
}),
|
|
func: async ({ func = '' }) => {
|
|
const filteredFunctions = functions.filter((f) => f.name === func);
|
|
chain.chains[0].lc_kwargs.llmKwargs.functions = filteredFunctions;
|
|
const result = await chain.call({
|
|
query: `${message}${func?.length > 0 ? `\nUse ${func}` : ''}`,
|
|
signal,
|
|
});
|
|
return result.response;
|
|
},
|
|
});
|
|
}
|
|
|
|
module.exports = {
|
|
getSpec,
|
|
readSpecFile,
|
|
createOpenAPIPlugin,
|
|
};
|