mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-18 17:30:16 +01:00
* WIP: first pass ModelSpecs * refactor(onSelectEndpoint): use `getConvoSwitchLogic` * feat: introduce iconURL, greeting, frontend fields for conversations/presets/messages * feat: conversation.iconURL & greeting in Landing * feat: conversation.iconURL & greeting in New Chat button * feat: message.iconURL * refactor: ConversationIcon -> ConvoIconURL * WIP: add spec as a conversation field * refactor: useAppStartup, set spec on initial load for new chat, allow undefined spec, add localStorage keys enum, additional type fields for spec * feat: handle `showIconInMenu`, `showIconInHeader`, undefined `iconURL` and no specs on initial load * chore: handle undefined or empty modelSpecs * WIP: first pass, modelSpec schema for custom config * refactor: move default filtered tools definition to ToolService * feat: pass modelSpecs from backend via startupConfig * refactor: modelSpecs config, return and define list * fix: react error and include iconURL in responseMessage * refactor: add iconURL to responseMessage only * refactor: getIconEndpoint * refactor: pass TSpecsConfig * fix(assistants): differentiate compactAssistantSchema, correctly resets shared conversation state with other endpoints * refactor: assistant id prefix localStorage key * refactor: add more LocalStorageKeys and replace hardcoded values * feat: prioritize spec on new chat behavior: last selected modelSpec behavior (localStorage) * feat: first pass, interface config * chore: WIP, todo: add warnings based on config.modelSpecs settings. * feat: enforce modelSpecs if configured * feat: show config file yaml errors * chore: delete unused legacy Plugins component * refactor: set tools to localStorage from recoil store * chore: add stable recoil setter to useEffect deps * refactor: save tools to conversation documents * style(MultiSelectPop): dynamic height, remove unused import * refactor(react-query): use localstorage keys and pass config to useAvailablePluginsQuery * feat(utils): add mapPlugins * refactor(Convo): use conversation.tools if defined, lastSelectedTools if not * refactor: remove unused legacy code using `useSetOptions`, remove conditional flag `isMultiChat` for using legacy settings * refactor(PluginStoreDialog): add exhaustive-deps which are stable react state setters * fix(HeaderOptions): pass `popover` as true * refactor(useSetStorage): use project enums * refactor: use LocalStorageKeys enum * fix: prevent setConversation from setting falsy values in lastSelectedTools * refactor: use map for availableTools state and available Plugins query * refactor(updateLastSelectedModel): organize logic better and add note on purpose * fix(setAgentOption): prevent reseting last model to secondary model for gptPlugins * refactor(buildDefaultConvo): use enum * refactor: remove `useSetStorage` and consolidate areas where conversation state is saved to localStorage * fix: conversations retain tools on refresh * fix(gptPlugins): prevent nullish tools from being saved * chore: delete useServerStream * refactor: move initial plugins logic to useAppStartup * refactor(MultiSelectDropDown): add more pass-in className props * feat: use tools in presets * chore: delete unused usePresetOptions * refactor: new agentOptions default handling * chore: note * feat: add label and custom instructions to agents * chore: remove 'disabled with tools' message * style: move plugins to 2nd column in parameters * fix: TPreset type for agentOptions * fix: interface controls * refactor: add interfaceConfig, use Separator within Switcher * refactor: hide Assistants panel if interface.parameters are disabled * fix(Header): only modelSpecs if list is greater than 0 * refactor: separate MessageIcon logic from useMessageHelpers for better react rule-following * fix(AppService): don't use reserved keyword 'interface' * feat: set existing Icon for custom endpoints through iconURL * fix(ci): tests passing for App Service * docs: refactor custom_config.md for readability and better organization, also include missing values * docs: interface section and re-organize docs * docs: update modelSpecs info * chore: remove unused files * chore: remove unused files * chore: move useSetIndexOptions * chore: remove unused file * chore: move useConversation(s) * chore: move useDefaultConvo * chore: move useNavigateToConvo * refactor: use plugin install hook so it can be used elsewhere * chore: import order * update docs * refactor(OpenAI/Plugins): allow modelLabel as an initial value for chatGptLabel * chore: remove unused EndpointOptionsPopover and hide 'Save as Preset' button if preset UI visibility disabled * feat(loadDefaultInterface): issue warnings based on values * feat: changelog for custom config file * docs: add additional changelog note * fix: prevent unavailable tool selection from preset and update availableTools on Plugin installations * feat: add `filteredTools` option in custom config * chore: changelog * fix(MessageIcon): always overwrite conversation.iconURL in messageSettings * fix(ModelSpecsMenu): icon edge cases * fix(NewChat): dynamic icon * fix(PluginsClient): always include endpoint in responseMessage * fix: always include endpoint and iconURL in responseMessage across different response methods * feat: interchangeable keys for modelSpec enforcing
500 lines
17 KiB
JavaScript
500 lines
17 KiB
JavaScript
const OpenAIClient = require('./OpenAIClient');
|
|
const { CallbackManager } = require('langchain/callbacks');
|
|
const { BufferMemory, ChatMessageHistory } = require('langchain/memory');
|
|
const { initializeCustomAgent, initializeFunctionsAgent } = require('./agents');
|
|
const { addImages, buildErrorInput, buildPromptPrefix } = require('./output_parsers');
|
|
const { processFileURL } = require('~/server/services/Files/process');
|
|
const { EModelEndpoint } = require('librechat-data-provider');
|
|
const { formatLangChainMessages } = require('./prompts');
|
|
const checkBalance = require('~/models/checkBalance');
|
|
const { SelfReflectionTool } = require('./tools');
|
|
const { isEnabled } = require('~/server/utils');
|
|
const { extractBaseURL } = require('~/utils');
|
|
const { loadTools } = require('./tools/util');
|
|
const { logger } = require('~/config');
|
|
|
|
class PluginsClient extends OpenAIClient {
|
|
constructor(apiKey, options = {}) {
|
|
super(apiKey, options);
|
|
this.sender = options.sender ?? 'Assistant';
|
|
this.tools = [];
|
|
this.actions = [];
|
|
this.setOptions(options);
|
|
this.openAIApiKey = this.apiKey;
|
|
this.executor = null;
|
|
}
|
|
|
|
setOptions(options) {
|
|
this.agentOptions = { ...options.agentOptions };
|
|
this.functionsAgent = this.agentOptions?.agent === 'functions';
|
|
this.agentIsGpt3 = this.agentOptions?.model?.includes('gpt-3');
|
|
|
|
super.setOptions(options);
|
|
|
|
this.isGpt3 = this.modelOptions?.model?.includes('gpt-3');
|
|
|
|
if (this.options.reverseProxyUrl) {
|
|
this.langchainProxy = extractBaseURL(this.options.reverseProxyUrl);
|
|
}
|
|
}
|
|
|
|
getSaveOptions() {
|
|
return {
|
|
chatGptLabel: this.options.chatGptLabel,
|
|
promptPrefix: this.options.promptPrefix,
|
|
tools: this.options.tools,
|
|
...this.modelOptions,
|
|
agentOptions: this.agentOptions,
|
|
iconURL: this.options.iconURL,
|
|
greeting: this.options.greeting,
|
|
spec: this.options.spec,
|
|
};
|
|
}
|
|
|
|
saveLatestAction(action) {
|
|
this.actions.push(action);
|
|
}
|
|
|
|
getFunctionModelName(input) {
|
|
if (/-(?!0314)\d{4}/.test(input)) {
|
|
return input;
|
|
} else if (input.includes('gpt-3.5-turbo')) {
|
|
return 'gpt-3.5-turbo';
|
|
} else if (input.includes('gpt-4')) {
|
|
return 'gpt-4';
|
|
} else {
|
|
return 'gpt-3.5-turbo';
|
|
}
|
|
}
|
|
|
|
getBuildMessagesOptions(opts) {
|
|
return {
|
|
isChatCompletion: true,
|
|
promptPrefix: opts.promptPrefix,
|
|
abortController: opts.abortController,
|
|
};
|
|
}
|
|
|
|
async initialize({ user, message, onAgentAction, onChainEnd, signal }) {
|
|
const modelOptions = {
|
|
modelName: this.agentOptions.model,
|
|
temperature: this.agentOptions.temperature,
|
|
};
|
|
|
|
const model = this.initializeLLM({
|
|
...modelOptions,
|
|
context: 'plugins',
|
|
initialMessageCount: this.currentMessages.length + 1,
|
|
});
|
|
|
|
logger.debug(
|
|
`[PluginsClient] Agent Model: ${model.modelName} | Temp: ${model.temperature} | Functions: ${this.functionsAgent}`,
|
|
);
|
|
|
|
// Map Messages to Langchain format
|
|
const pastMessages = formatLangChainMessages(this.currentMessages.slice(0, -1), {
|
|
userName: this.options?.name,
|
|
});
|
|
logger.debug('[PluginsClient] pastMessages: ' + pastMessages.length);
|
|
|
|
// TODO: use readOnly memory, TokenBufferMemory? (both unavailable in LangChainJS)
|
|
const memory = new BufferMemory({
|
|
llm: model,
|
|
chatHistory: new ChatMessageHistory(pastMessages),
|
|
});
|
|
|
|
this.tools = await loadTools({
|
|
user,
|
|
model,
|
|
tools: this.options.tools,
|
|
functions: this.functionsAgent,
|
|
options: {
|
|
memory,
|
|
signal: this.abortController.signal,
|
|
openAIApiKey: this.openAIApiKey,
|
|
conversationId: this.conversationId,
|
|
fileStrategy: this.options.req.app.locals.fileStrategy,
|
|
processFileURL,
|
|
message,
|
|
},
|
|
});
|
|
|
|
if (this.tools.length > 0 && !this.functionsAgent) {
|
|
this.tools.push(new SelfReflectionTool({ message, isGpt3: false }));
|
|
} else if (this.tools.length === 0) {
|
|
return;
|
|
}
|
|
|
|
logger.debug('[PluginsClient] Requested Tools', this.options.tools);
|
|
logger.debug(
|
|
'[PluginsClient] Loaded Tools',
|
|
this.tools.map((tool) => tool.name),
|
|
);
|
|
|
|
const handleAction = (action, runId, callback = null) => {
|
|
this.saveLatestAction(action);
|
|
|
|
logger.debug('[PluginsClient] Latest Agent Action ', this.actions[this.actions.length - 1]);
|
|
|
|
if (typeof callback === 'function') {
|
|
callback(action, runId);
|
|
}
|
|
};
|
|
|
|
// initialize agent
|
|
const initializer = this.functionsAgent ? initializeFunctionsAgent : initializeCustomAgent;
|
|
this.executor = await initializer({
|
|
model,
|
|
signal,
|
|
pastMessages,
|
|
tools: this.tools,
|
|
verbose: this.options.debug,
|
|
returnIntermediateSteps: true,
|
|
customName: this.options.chatGptLabel,
|
|
currentDateString: this.currentDateString,
|
|
customInstructions: this.options.promptPrefix,
|
|
callbackManager: CallbackManager.fromHandlers({
|
|
async handleAgentAction(action, runId) {
|
|
handleAction(action, runId, onAgentAction);
|
|
},
|
|
async handleChainEnd(action) {
|
|
if (typeof onChainEnd === 'function') {
|
|
onChainEnd(action);
|
|
}
|
|
},
|
|
}),
|
|
});
|
|
|
|
logger.debug('[PluginsClient] Loaded agent.');
|
|
}
|
|
|
|
async executorCall(message, { signal, stream, onToolStart, onToolEnd }) {
|
|
let errorMessage = '';
|
|
const maxAttempts = 1;
|
|
|
|
for (let attempts = 1; attempts <= maxAttempts; attempts++) {
|
|
const errorInput = buildErrorInput({
|
|
message,
|
|
errorMessage,
|
|
actions: this.actions,
|
|
functionsAgent: this.functionsAgent,
|
|
});
|
|
const input = attempts > 1 ? errorInput : message;
|
|
|
|
logger.debug(`[PluginsClient] Attempt ${attempts} of ${maxAttempts}`);
|
|
|
|
if (errorMessage.length > 0) {
|
|
logger.debug('[PluginsClient] Caught error, input: ' + JSON.stringify(input));
|
|
}
|
|
|
|
try {
|
|
this.result = await this.executor.call({ input, signal }, [
|
|
{
|
|
async handleToolStart(...args) {
|
|
await onToolStart(...args);
|
|
},
|
|
async handleToolEnd(...args) {
|
|
await onToolEnd(...args);
|
|
},
|
|
async handleLLMEnd(output) {
|
|
const { generations } = output;
|
|
const { text } = generations[0][0];
|
|
if (text && typeof stream === 'function') {
|
|
await stream(text);
|
|
}
|
|
},
|
|
},
|
|
]);
|
|
break; // Exit the loop if the function call is successful
|
|
} catch (err) {
|
|
logger.error('[PluginsClient] executorCall error:', err);
|
|
if (attempts === maxAttempts) {
|
|
const { run } = this.runManager.getRunByConversationId(this.conversationId);
|
|
const defaultOutput = `Encountered an error while attempting to respond: ${err.message}`;
|
|
this.result.output = run && run.error ? run.error : defaultOutput;
|
|
this.result.errorMessage = run && run.error ? run.error : err.message;
|
|
this.result.intermediateSteps = this.actions;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
async handleResponseMessage(responseMessage, saveOptions, user) {
|
|
const { output, errorMessage, ...result } = this.result;
|
|
logger.debug('[PluginsClient][handleResponseMessage] Output:', {
|
|
output,
|
|
errorMessage,
|
|
...result,
|
|
});
|
|
const { error } = responseMessage;
|
|
if (!error) {
|
|
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
|
|
responseMessage.completionTokens = this.getTokenCount(responseMessage.text);
|
|
}
|
|
|
|
// Record usage only when completion is skipped as it is already recorded in the agent phase.
|
|
if (!this.agentOptions.skipCompletion && !error) {
|
|
await this.recordTokenUsage(responseMessage);
|
|
}
|
|
|
|
await this.saveMessageToDatabase(responseMessage, saveOptions, user);
|
|
delete responseMessage.tokenCount;
|
|
return { ...responseMessage, ...result };
|
|
}
|
|
|
|
async sendMessage(message, opts = {}) {
|
|
// If a message is edited, no tools can be used.
|
|
const completionMode = this.options.tools.length === 0 || opts.isEdited;
|
|
if (completionMode) {
|
|
this.setOptions(opts);
|
|
return super.sendMessage(message, opts);
|
|
}
|
|
logger.debug('[PluginsClient] sendMessage', { userMessageText: message, opts });
|
|
const {
|
|
user,
|
|
isEdited,
|
|
conversationId,
|
|
responseMessageId,
|
|
saveOptions,
|
|
userMessage,
|
|
onAgentAction,
|
|
onChainEnd,
|
|
onToolStart,
|
|
onToolEnd,
|
|
} = await this.handleStartMethods(message, opts);
|
|
|
|
this.currentMessages.push(userMessage);
|
|
|
|
let {
|
|
prompt: payload,
|
|
tokenCountMap,
|
|
promptTokens,
|
|
} = await this.buildMessages(
|
|
this.currentMessages,
|
|
userMessage.messageId,
|
|
this.getBuildMessagesOptions({
|
|
promptPrefix: null,
|
|
abortController: this.abortController,
|
|
}),
|
|
);
|
|
|
|
if (tokenCountMap) {
|
|
logger.debug('[PluginsClient] tokenCountMap', { tokenCountMap });
|
|
if (tokenCountMap[userMessage.messageId]) {
|
|
userMessage.tokenCount = tokenCountMap[userMessage.messageId];
|
|
logger.debug('[PluginsClient] userMessage.tokenCount', userMessage.tokenCount);
|
|
}
|
|
this.handleTokenCountMap(tokenCountMap);
|
|
}
|
|
|
|
this.result = {};
|
|
if (payload) {
|
|
this.currentMessages = payload;
|
|
}
|
|
await this.saveMessageToDatabase(userMessage, saveOptions, user);
|
|
|
|
if (isEnabled(process.env.CHECK_BALANCE)) {
|
|
await checkBalance({
|
|
req: this.options.req,
|
|
res: this.options.res,
|
|
txData: {
|
|
user: this.user,
|
|
tokenType: 'prompt',
|
|
amount: promptTokens,
|
|
debug: this.options.debug,
|
|
model: this.modelOptions.model,
|
|
endpoint: EModelEndpoint.openAI,
|
|
},
|
|
});
|
|
}
|
|
|
|
const responseMessage = {
|
|
endpoint: EModelEndpoint.gptPlugins,
|
|
iconURL: this.options.iconURL,
|
|
messageId: responseMessageId,
|
|
conversationId,
|
|
parentMessageId: userMessage.messageId,
|
|
isCreatedByUser: false,
|
|
isEdited,
|
|
model: this.modelOptions.model,
|
|
sender: this.sender,
|
|
promptTokens,
|
|
};
|
|
|
|
await this.initialize({
|
|
user,
|
|
message,
|
|
onAgentAction,
|
|
onChainEnd,
|
|
signal: this.abortController.signal,
|
|
onProgress: opts.onProgress,
|
|
});
|
|
|
|
// const stream = async (text) => {
|
|
// await this.generateTextStream.call(this, text, opts.onProgress, { delay: 1 });
|
|
// };
|
|
await this.executorCall(message, {
|
|
signal: this.abortController.signal,
|
|
// stream,
|
|
onToolStart,
|
|
onToolEnd,
|
|
});
|
|
|
|
// If message was aborted mid-generation
|
|
if (this.result?.errorMessage?.length > 0 && this.result?.errorMessage?.includes('cancel')) {
|
|
responseMessage.text = 'Cancelled.';
|
|
return await this.handleResponseMessage(responseMessage, saveOptions, user);
|
|
}
|
|
|
|
// If error occurred during generation (likely token_balance)
|
|
if (this.result?.errorMessage?.length > 0) {
|
|
responseMessage.error = true;
|
|
responseMessage.text = this.result.output;
|
|
return await this.handleResponseMessage(responseMessage, saveOptions, user);
|
|
}
|
|
|
|
if (this.agentOptions.skipCompletion && this.result.output && this.functionsAgent) {
|
|
const partialText = opts.getPartialText();
|
|
const trimmedPartial = opts.getPartialText().replaceAll(':::plugin:::\n', '');
|
|
responseMessage.text =
|
|
trimmedPartial.length === 0 ? `${partialText}${this.result.output}` : partialText;
|
|
addImages(this.result.intermediateSteps, responseMessage);
|
|
await this.generateTextStream(this.result.output, opts.onProgress, { delay: 5 });
|
|
return await this.handleResponseMessage(responseMessage, saveOptions, user);
|
|
}
|
|
|
|
if (this.agentOptions.skipCompletion && this.result.output) {
|
|
responseMessage.text = this.result.output;
|
|
addImages(this.result.intermediateSteps, responseMessage);
|
|
await this.generateTextStream(this.result.output, opts.onProgress, { delay: 5 });
|
|
return await this.handleResponseMessage(responseMessage, saveOptions, user);
|
|
}
|
|
|
|
logger.debug('[PluginsClient] Completion phase: this.result', this.result);
|
|
|
|
const promptPrefix = buildPromptPrefix({
|
|
result: this.result,
|
|
message,
|
|
functionsAgent: this.functionsAgent,
|
|
});
|
|
|
|
logger.debug('[PluginsClient]', { promptPrefix });
|
|
|
|
payload = await this.buildCompletionPrompt({
|
|
messages: this.currentMessages,
|
|
promptPrefix,
|
|
});
|
|
|
|
logger.debug('[PluginsClient] buildCompletionPrompt Payload', payload);
|
|
responseMessage.text = await this.sendCompletion(payload, opts);
|
|
return await this.handleResponseMessage(responseMessage, saveOptions, user);
|
|
}
|
|
|
|
async buildCompletionPrompt({ messages, promptPrefix: _promptPrefix }) {
|
|
logger.debug('[PluginsClient] buildCompletionPrompt messages', messages);
|
|
|
|
const orderedMessages = messages;
|
|
let promptPrefix = _promptPrefix.trim();
|
|
// If the prompt prefix doesn't end with the end token, add it.
|
|
if (!promptPrefix.endsWith(`${this.endToken}`)) {
|
|
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
|
|
}
|
|
promptPrefix = `${this.startToken}Instructions:\n${promptPrefix}`;
|
|
const promptSuffix = `${this.startToken}${this.chatGptLabel ?? 'Assistant'}:\n`;
|
|
|
|
const instructionsPayload = {
|
|
role: 'system',
|
|
name: 'instructions',
|
|
content: promptPrefix,
|
|
};
|
|
|
|
const messagePayload = {
|
|
role: 'system',
|
|
content: promptSuffix,
|
|
};
|
|
|
|
if (this.isGpt3) {
|
|
instructionsPayload.role = 'user';
|
|
messagePayload.role = 'user';
|
|
instructionsPayload.content += `\n${promptSuffix}`;
|
|
}
|
|
|
|
// testing if this works with browser endpoint
|
|
if (!this.isGpt3 && this.options.reverseProxyUrl) {
|
|
instructionsPayload.role = 'user';
|
|
}
|
|
|
|
let currentTokenCount =
|
|
this.getTokenCountForMessage(instructionsPayload) +
|
|
this.getTokenCountForMessage(messagePayload);
|
|
|
|
let promptBody = '';
|
|
const maxTokenCount = this.maxPromptTokens;
|
|
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
|
|
// Do this within a recursive async function so that it doesn't block the event loop for too long.
|
|
const buildPromptBody = async () => {
|
|
if (currentTokenCount < maxTokenCount && orderedMessages.length > 0) {
|
|
const message = orderedMessages.pop();
|
|
const isCreatedByUser = message.isCreatedByUser || message.role?.toLowerCase() === 'user';
|
|
const roleLabel = isCreatedByUser ? this.userLabel : this.chatGptLabel;
|
|
let messageString = `${this.startToken}${roleLabel}:\n${
|
|
message.text ?? message.content ?? ''
|
|
}${this.endToken}\n`;
|
|
let newPromptBody = `${messageString}${promptBody}`;
|
|
|
|
const tokenCountForMessage = this.getTokenCount(messageString);
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
if (newTokenCount > maxTokenCount) {
|
|
if (promptBody) {
|
|
// This message would put us over the token limit, so don't add it.
|
|
return false;
|
|
}
|
|
// This is the first message, so we can't add it. Just throw an error.
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
}
|
|
promptBody = newPromptBody;
|
|
currentTokenCount = newTokenCount;
|
|
// wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setTimeout(resolve, 0));
|
|
return buildPromptBody();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
await buildPromptBody();
|
|
const prompt = promptBody;
|
|
messagePayload.content = prompt;
|
|
// Add 2 tokens for metadata after all messages have been counted.
|
|
currentTokenCount += 2;
|
|
|
|
if (this.isGpt3 && messagePayload.content.length > 0) {
|
|
const context = 'Chat History:\n';
|
|
messagePayload.content = `${context}${prompt}`;
|
|
currentTokenCount += this.getTokenCount(context);
|
|
}
|
|
|
|
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
|
|
this.modelOptions.max_tokens = Math.min(
|
|
this.maxContextTokens - currentTokenCount,
|
|
this.maxResponseTokens,
|
|
);
|
|
|
|
if (this.isGpt3) {
|
|
messagePayload.content += promptSuffix;
|
|
return [instructionsPayload, messagePayload];
|
|
}
|
|
|
|
const result = [messagePayload, instructionsPayload];
|
|
|
|
if (this.functionsAgent && !this.isGpt3) {
|
|
result[1].content = `${result[1].content}\n${this.startToken}${this.chatGptLabel}:\nSure thing! Here is the output you requested:\n`;
|
|
}
|
|
|
|
return result.filter((message) => message.content.length > 0);
|
|
}
|
|
}
|
|
|
|
module.exports = PluginsClient;
|