LibreChat/packages/api/src/endpoints/openai/llm.spec.ts
Danny Avila 24e8a258cd
Some checks are pending
Docker Dev Branch Images Build / build (Dockerfile, lc-dev, node) (push) Waiting to run
Docker Dev Branch Images Build / build (Dockerfile.multi, lc-dev-api, api-build) (push) Waiting to run
Docker Dev Images Build / build (Dockerfile, librechat-dev, node) (push) Waiting to run
Docker Dev Images Build / build (Dockerfile.multi, librechat-dev-api, api-build) (push) Waiting to run
Sync Locize Translations & Create Translation PR / Sync Translation Keys with Locize (push) Waiting to run
Sync Locize Translations & Create Translation PR / Create Translation PR on Version Published (push) Blocked by required conditions
🔧 fix: Clean empty strings from model_parameters for Agents/OpenAI (#11248)
2026-01-07 11:26:53 -05:00

673 lines
20 KiB
TypeScript

import {
Verbosity,
EModelEndpoint,
ReasoningEffort,
ReasoningSummary,
} from 'librechat-data-provider';
import { getOpenAILLMConfig, extractDefaultParams, applyDefaultParams } from './llm';
import type * as t from '~/types';
describe('getOpenAILLMConfig', () => {
describe('Basic Configuration', () => {
it('should create a basic configuration with required fields', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
},
});
expect(result.llmConfig).toHaveProperty('apiKey', 'test-api-key');
expect(result.llmConfig).toHaveProperty('model', 'gpt-4');
expect(result.llmConfig).toHaveProperty('streaming', true);
expect(result.tools).toEqual([]);
});
it('should handle model options including temperature and penalties', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: 0.7,
frequency_penalty: 0.5,
presence_penalty: 0.3,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.7);
expect(result.llmConfig).toHaveProperty('frequencyPenalty', 0.5);
expect(result.llmConfig).toHaveProperty('presencePenalty', 0.3);
});
it('should handle max_tokens conversion to maxTokens', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
max_tokens: 4096,
},
});
expect(result.llmConfig).toHaveProperty('maxTokens', 4096);
expect(result.llmConfig).not.toHaveProperty('max_tokens');
});
});
describe('Empty String Handling (Issue Fix)', () => {
it('should remove empty string values for numeric parameters', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: '' as unknown as number,
topP: '' as unknown as number,
max_tokens: '' as unknown as number,
},
});
expect(result.llmConfig).not.toHaveProperty('temperature');
expect(result.llmConfig).not.toHaveProperty('topP');
expect(result.llmConfig).not.toHaveProperty('maxTokens');
expect(result.llmConfig).not.toHaveProperty('max_tokens');
});
it('should remove empty string values for frequency and presence penalties', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
frequency_penalty: '' as unknown as number,
presence_penalty: '' as unknown as number,
},
});
expect(result.llmConfig).not.toHaveProperty('frequencyPenalty');
expect(result.llmConfig).not.toHaveProperty('presencePenalty');
expect(result.llmConfig).not.toHaveProperty('frequency_penalty');
expect(result.llmConfig).not.toHaveProperty('presence_penalty');
});
it('should preserve valid numeric values while removing empty strings', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: 0.7,
topP: '' as unknown as number,
max_tokens: 4096,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.7);
expect(result.llmConfig).not.toHaveProperty('topP');
expect(result.llmConfig).toHaveProperty('maxTokens', 4096);
});
it('should preserve zero values (not treat them as empty)', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: 0,
frequency_penalty: 0,
presence_penalty: 0,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0);
expect(result.llmConfig).toHaveProperty('frequencyPenalty', 0);
expect(result.llmConfig).toHaveProperty('presencePenalty', 0);
});
});
describe('OpenAI Reasoning Models (o1/o3/gpt-5)', () => {
const reasoningModels = [
'o1',
'o1-mini',
'o1-preview',
'o1-pro',
'o3',
'o3-mini',
'gpt-5',
'gpt-5-pro',
'gpt-5-turbo',
];
const excludedParams = [
'frequencyPenalty',
'presencePenalty',
'temperature',
'topP',
'logitBias',
'n',
'logprobs',
];
it.each(reasoningModels)(
'should exclude unsupported parameters for reasoning model: %s',
(model) => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model,
temperature: 0.7,
frequency_penalty: 0.5,
presence_penalty: 0.3,
topP: 0.9,
logitBias: { '50256': -100 },
n: 2,
logprobs: true,
} as Partial<t.OpenAIParameters>,
});
excludedParams.forEach((param) => {
expect(result.llmConfig).not.toHaveProperty(param);
});
expect(result.llmConfig).toHaveProperty('model', model);
expect(result.llmConfig).toHaveProperty('streaming', true);
},
);
it('should preserve maxTokens for reasoning models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'o1',
max_tokens: 4096,
temperature: 0.7,
},
});
expect(result.llmConfig).toHaveProperty('maxTokens', 4096);
expect(result.llmConfig).not.toHaveProperty('temperature');
});
it('should preserve other valid parameters for reasoning models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'o1',
max_tokens: 8192,
stop: ['END'],
},
});
expect(result.llmConfig).toHaveProperty('maxTokens', 8192);
expect(result.llmConfig).toHaveProperty('stop', ['END']);
});
it('should handle GPT-5 max_tokens conversion to max_completion_tokens', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-5',
max_tokens: 8192,
stop: ['END'],
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('max_completion_tokens', 8192);
expect(result.llmConfig).not.toHaveProperty('maxTokens');
expect(result.llmConfig).toHaveProperty('stop', ['END']);
});
it('should combine user dropParams with reasoning exclusion params', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'o3-mini',
temperature: 0.7,
stop: ['END'],
},
dropParams: ['stop'],
});
expect(result.llmConfig).not.toHaveProperty('temperature');
expect(result.llmConfig).not.toHaveProperty('stop');
});
it('should NOT exclude parameters for non-reasoning models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4-turbo',
temperature: 0.7,
frequency_penalty: 0.5,
presence_penalty: 0.3,
topP: 0.9,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.7);
expect(result.llmConfig).toHaveProperty('frequencyPenalty', 0.5);
expect(result.llmConfig).toHaveProperty('presencePenalty', 0.3);
expect(result.llmConfig).toHaveProperty('topP', 0.9);
});
it('should NOT exclude parameters for gpt-5.x versioned models (they support sampling params)', () => {
const versionedModels = ['gpt-5.1', 'gpt-5.1-turbo', 'gpt-5.2', 'gpt-5.5-preview'];
versionedModels.forEach((model) => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model,
temperature: 0.7,
frequency_penalty: 0.5,
presence_penalty: 0.3,
topP: 0.9,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.7);
expect(result.llmConfig).toHaveProperty('frequencyPenalty', 0.5);
expect(result.llmConfig).toHaveProperty('presencePenalty', 0.3);
expect(result.llmConfig).toHaveProperty('topP', 0.9);
});
});
it('should NOT exclude parameters for gpt-5-chat (it supports sampling params)', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-5-chat',
temperature: 0.7,
frequency_penalty: 0.5,
presence_penalty: 0.3,
topP: 0.9,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.7);
expect(result.llmConfig).toHaveProperty('frequencyPenalty', 0.5);
expect(result.llmConfig).toHaveProperty('presencePenalty', 0.3);
expect(result.llmConfig).toHaveProperty('topP', 0.9);
});
it('should handle reasoning models with reasoning_effort parameter', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
endpoint: EModelEndpoint.openAI,
modelOptions: {
model: 'o1',
reasoning_effort: ReasoningEffort.high,
temperature: 0.7,
},
});
expect(result.llmConfig).toHaveProperty('reasoning_effort', ReasoningEffort.high);
expect(result.llmConfig).not.toHaveProperty('temperature');
});
});
describe('OpenAI Web Search Models', () => {
it('should exclude parameters for gpt-4o search models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4o-search-preview',
temperature: 0.7,
top_p: 0.9,
seed: 42,
} as Partial<t.OpenAIParameters>,
});
expect(result.llmConfig).not.toHaveProperty('temperature');
expect(result.llmConfig).not.toHaveProperty('top_p');
expect(result.llmConfig).not.toHaveProperty('seed');
});
it('should preserve max_tokens for search models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4o-search',
max_tokens: 4096,
temperature: 0.7,
},
});
expect(result.llmConfig).toHaveProperty('maxTokens', 4096);
expect(result.llmConfig).not.toHaveProperty('temperature');
});
});
describe('Web Search Functionality', () => {
it('should enable web search with Responses API', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
web_search: true,
},
});
expect(result.llmConfig).toHaveProperty('useResponsesApi', true);
expect(result.tools).toContainEqual({ type: 'web_search' });
});
it('should handle web search with OpenRouter', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
useOpenRouter: true,
modelOptions: {
model: 'gpt-4',
web_search: true,
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('plugins', [{ id: 'web' }]);
expect(result.llmConfig).toHaveProperty('include_reasoning', true);
});
it('should disable web search via dropParams', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
web_search: true,
},
dropParams: ['web_search'],
});
expect(result.tools).not.toContainEqual({ type: 'web_search' });
});
});
describe('GPT-5 max_tokens Handling', () => {
it('should convert maxTokens to max_completion_tokens for GPT-5 models', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-5',
max_tokens: 8192,
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('max_completion_tokens', 8192);
expect(result.llmConfig).not.toHaveProperty('maxTokens');
});
it('should convert maxTokens to max_output_tokens for GPT-5 with Responses API', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-5',
max_tokens: 8192,
},
addParams: {
useResponsesApi: true,
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('max_output_tokens', 8192);
expect(result.llmConfig).not.toHaveProperty('maxTokens');
});
});
describe('Reasoning Parameters', () => {
it('should handle reasoning_effort for OpenAI endpoint', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
endpoint: EModelEndpoint.openAI,
modelOptions: {
model: 'o1',
reasoning_effort: ReasoningEffort.high,
},
});
expect(result.llmConfig).toHaveProperty('reasoning_effort', ReasoningEffort.high);
});
it('should use reasoning object for non-OpenAI endpoints', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
endpoint: 'custom',
modelOptions: {
model: 'o1',
reasoning_effort: ReasoningEffort.high,
reasoning_summary: ReasoningSummary.concise,
},
});
expect(result.llmConfig).toHaveProperty('reasoning');
expect(result.llmConfig.reasoning).toEqual({
effort: ReasoningEffort.high,
summary: ReasoningSummary.concise,
});
});
it('should use reasoning object when useResponsesApi is true', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
endpoint: EModelEndpoint.openAI,
modelOptions: {
model: 'o1',
reasoning_effort: ReasoningEffort.medium,
reasoning_summary: ReasoningSummary.detailed,
},
addParams: {
useResponsesApi: true,
},
});
expect(result.llmConfig).toHaveProperty('reasoning');
expect(result.llmConfig.reasoning).toEqual({
effort: ReasoningEffort.medium,
summary: ReasoningSummary.detailed,
});
});
});
describe('Default and Add Parameters', () => {
it('should apply default parameters when fields are undefined', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
},
defaultParams: {
temperature: 0.5,
topP: 0.9,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.5);
expect(result.llmConfig).toHaveProperty('topP', 0.9);
});
it('should NOT override existing values with default parameters', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: 0.8,
},
defaultParams: {
temperature: 0.5,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.8);
});
it('should apply addParams and override defaults', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
},
defaultParams: {
temperature: 0.5,
},
addParams: {
temperature: 0.9,
seed: 42,
},
});
expect(result.llmConfig).toHaveProperty('temperature', 0.9);
expect(result.llmConfig).toHaveProperty('seed', 42);
});
it('should handle unknown params via modelKwargs', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
},
addParams: {
custom_param: 'custom_value',
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('custom_param', 'custom_value');
});
});
describe('Drop Parameters', () => {
it('should drop specified parameters', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
temperature: 0.7,
topP: 0.9,
},
dropParams: ['temperature'],
});
expect(result.llmConfig).not.toHaveProperty('temperature');
expect(result.llmConfig).toHaveProperty('topP', 0.9);
});
});
describe('OpenRouter Configuration', () => {
it('should include include_reasoning for OpenRouter', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
useOpenRouter: true,
modelOptions: {
model: 'gpt-4',
},
});
expect(result.llmConfig).toHaveProperty('include_reasoning', true);
});
});
describe('Verbosity Handling', () => {
it('should add verbosity to modelKwargs', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
verbosity: Verbosity.high,
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('verbosity', Verbosity.high);
});
it('should convert verbosity to text object with Responses API', () => {
const result = getOpenAILLMConfig({
apiKey: 'test-api-key',
streaming: true,
modelOptions: {
model: 'gpt-4',
verbosity: Verbosity.low,
},
addParams: {
useResponsesApi: true,
},
});
expect(result.llmConfig.modelKwargs).toHaveProperty('text', { verbosity: Verbosity.low });
expect(result.llmConfig.modelKwargs).not.toHaveProperty('verbosity');
});
});
});
describe('extractDefaultParams', () => {
it('should extract default values from param definitions', () => {
const paramDefinitions = [
{ key: 'temperature', default: 0.7 },
{ key: 'maxTokens', default: 4096 },
{ key: 'noDefault' },
];
const result = extractDefaultParams(paramDefinitions);
expect(result).toEqual({
temperature: 0.7,
maxTokens: 4096,
});
});
it('should return undefined for undefined or non-array input', () => {
expect(extractDefaultParams(undefined)).toBeUndefined();
expect(extractDefaultParams(null as unknown as undefined)).toBeUndefined();
});
it('should handle empty array', () => {
const result = extractDefaultParams([]);
expect(result).toEqual({});
});
});
describe('applyDefaultParams', () => {
it('should apply defaults only when field is undefined', () => {
const target: Record<string, unknown> = {
temperature: 0.8,
maxTokens: undefined,
};
const defaults = {
temperature: 0.5,
maxTokens: 4096,
topP: 0.9,
};
applyDefaultParams(target, defaults);
expect(target).toEqual({
temperature: 0.8,
maxTokens: 4096,
topP: 0.9,
});
});
});