mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-16 08:20:14 +01:00
* 🗑️ chore: Remove unused Legacy Provider clients and related helpers * Deleted OpenAIClient and GoogleClient files along with their associated tests. * Removed references to these clients in the clients index file. * Cleaned up typedefs by removing the OpenAISpecClient export. * Updated chat controllers to use the OpenAI SDK directly instead of the removed client classes. * chore/remove-openapi-specs * 🗑️ chore: Remove unused mergeSort and misc utility functions * Deleted mergeSort.js and misc.js files as they are no longer needed. * Removed references to cleanUpPrimaryKeyValue in messages.js and adjusted related logic. * Updated mongoMeili.ts to eliminate local implementations of removed functions. * chore: remove legacy endpoints * chore: remove all plugins endpoint related code * chore: remove unused prompt handling code and clean up imports * Deleted handleInputs.js and instructions.js files as they are no longer needed. * Removed references to these files in the prompts index.js. * Updated docker-compose.yml to simplify reverse proxy configuration. * chore: remove unused LightningIcon import from Icons.tsx * chore: clean up translation.json by removing deprecated and unused keys * chore: update Jest configuration and remove unused mock file * Simplified the setupFiles array in jest.config.js by removing the fetchEventSource mock. * Deleted the fetchEventSource.js mock file as it is no longer needed. * fix: simplify endpoint type check in Landing and ConversationStarters components * Updated the endpoint type check to use strict equality for better clarity and performance. * Ensured consistency in the handling of the azureOpenAI endpoint across both components. * chore: remove unused dependencies from package.json and package-lock.json * chore: remove legacy EditController, associated routes and imports * chore: update banResponse logic to refine request handling for banned users * chore: remove unused validateEndpoint middleware and its references * chore: remove unused 'res' parameter from initializeClient in multiple endpoint files * chore: remove unused 'isSmallScreen' prop from BookmarkNav and NewChat components; clean up imports in ArchivedChatsTable and useSetIndexOptions hooks; enhance localization in PromptVersions * chore: remove unused import of Constants and TMessage from MobileNav; retain only necessary QueryKeys import * chore: remove unused TResPlugin type and related references; clean up imports in types and schemas
330 lines
9.6 KiB
JavaScript
330 lines
9.6 KiB
JavaScript
const axios = require('axios');
|
|
const { logger } = require('@librechat/data-schemas');
|
|
const { HttpsProxyAgent } = require('https-proxy-agent');
|
|
const { logAxiosError, inputSchema, processModelData, isUserProvided } = require('@librechat/api');
|
|
const {
|
|
CacheKeys,
|
|
defaultModels,
|
|
KnownEndpoints,
|
|
EModelEndpoint,
|
|
} = require('librechat-data-provider');
|
|
const { OllamaClient } = require('~/app/clients/OllamaClient');
|
|
const { config } = require('./Config/EndpointService');
|
|
const getLogStores = require('~/cache/getLogStores');
|
|
const { extractBaseURL } = require('~/utils');
|
|
|
|
/**
|
|
* Splits a string by commas and trims each resulting value.
|
|
* @param {string} input - The input string to split.
|
|
* @returns {string[]} An array of trimmed values.
|
|
*/
|
|
const splitAndTrim = (input) => {
|
|
if (!input || typeof input !== 'string') {
|
|
return [];
|
|
}
|
|
return input
|
|
.split(',')
|
|
.map((item) => item.trim())
|
|
.filter(Boolean);
|
|
};
|
|
|
|
/**
|
|
* Fetches OpenAI models from the specified base API path or Azure, based on the provided configuration.
|
|
*
|
|
* @param {Object} params - The parameters for fetching the models.
|
|
* @param {Object} params.user - The user ID to send to the API.
|
|
* @param {string} params.apiKey - The API key for authentication with the API.
|
|
* @param {string} params.baseURL - The base path URL for the API.
|
|
* @param {string} [params.name='OpenAI'] - The name of the API; defaults to 'OpenAI'.
|
|
* @param {boolean} [params.direct=false] - Whether `directEndpoint` was configured
|
|
* @param {boolean} [params.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [params.userIdQuery=false] - Whether to send the user ID as a query parameter.
|
|
* @param {boolean} [params.createTokenConfig=true] - Whether to create a token configuration from the API response.
|
|
* @param {string} [params.tokenKey] - The cache key to save the token configuration. Uses `name` if omitted.
|
|
* @param {Record<string, string>} [params.headers] - Optional headers for the request.
|
|
* @param {Partial<IUser>} [params.userObject] - Optional user object for header resolution.
|
|
* @returns {Promise<string[]>} A promise that resolves to an array of model identifiers.
|
|
* @async
|
|
*/
|
|
const fetchModels = async ({
|
|
user,
|
|
apiKey,
|
|
baseURL: _baseURL,
|
|
name = EModelEndpoint.openAI,
|
|
direct,
|
|
azure = false,
|
|
userIdQuery = false,
|
|
createTokenConfig = true,
|
|
tokenKey,
|
|
headers,
|
|
userObject,
|
|
}) => {
|
|
let models = [];
|
|
const baseURL = direct ? extractBaseURL(_baseURL) : _baseURL;
|
|
|
|
if (!baseURL && !azure) {
|
|
return models;
|
|
}
|
|
|
|
if (!apiKey) {
|
|
return models;
|
|
}
|
|
|
|
if (name && name.toLowerCase().startsWith(KnownEndpoints.ollama)) {
|
|
try {
|
|
return await OllamaClient.fetchModels(baseURL, { headers, user: userObject });
|
|
} catch (ollamaError) {
|
|
const logMessage =
|
|
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.';
|
|
logAxiosError({ message: logMessage, error: ollamaError });
|
|
}
|
|
}
|
|
|
|
try {
|
|
const options = {
|
|
headers: {
|
|
...(headers ?? {}),
|
|
},
|
|
timeout: 5000,
|
|
};
|
|
|
|
if (name === EModelEndpoint.anthropic) {
|
|
options.headers = {
|
|
'x-api-key': apiKey,
|
|
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
|
|
};
|
|
} else {
|
|
options.headers.Authorization = `Bearer ${apiKey}`;
|
|
}
|
|
|
|
if (process.env.PROXY) {
|
|
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
|
|
}
|
|
|
|
if (process.env.OPENAI_ORGANIZATION && baseURL.includes('openai')) {
|
|
options.headers['OpenAI-Organization'] = process.env.OPENAI_ORGANIZATION;
|
|
}
|
|
|
|
const url = new URL(`${baseURL.replace(/\/+$/, '')}${azure ? '' : '/models'}`);
|
|
if (user && userIdQuery) {
|
|
url.searchParams.append('user', user);
|
|
}
|
|
const res = await axios.get(url.toString(), options);
|
|
|
|
/** @type {z.infer<typeof inputSchema>} */
|
|
const input = res.data;
|
|
|
|
const validationResult = inputSchema.safeParse(input);
|
|
if (validationResult.success && createTokenConfig) {
|
|
const endpointTokenConfig = processModelData(input);
|
|
const cache = getLogStores(CacheKeys.TOKEN_CONFIG);
|
|
await cache.set(tokenKey ?? name, endpointTokenConfig);
|
|
}
|
|
models = input.data.map((item) => item.id);
|
|
} catch (error) {
|
|
const logMessage = `Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`;
|
|
logAxiosError({ message: logMessage, error });
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
/**
|
|
* Fetches models from the specified API path or Azure, based on the provided options.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {boolean} [opts.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [opts.assistants=false] - Whether to fetch models from Azure.
|
|
* @param {string[]} [_models=[]] - The models to use as a fallback.
|
|
*/
|
|
const fetchOpenAIModels = async (opts, _models = []) => {
|
|
let models = _models.slice() ?? [];
|
|
const { openAIApiKey } = config;
|
|
let apiKey = openAIApiKey;
|
|
const openaiBaseURL = 'https://api.openai.com/v1';
|
|
let baseURL = openaiBaseURL;
|
|
let reverseProxyUrl = process.env.OPENAI_REVERSE_PROXY;
|
|
|
|
if (opts.assistants && process.env.ASSISTANTS_BASE_URL) {
|
|
reverseProxyUrl = process.env.ASSISTANTS_BASE_URL;
|
|
} else if (opts.azure) {
|
|
return models;
|
|
// const azure = getAzureCredentials();
|
|
// baseURL = (genAzureChatCompletion(azure))
|
|
// .split('/deployments')[0]
|
|
// .concat(`/models?api-version=${azure.azureOpenAIApiVersion}`);
|
|
// apiKey = azureOpenAIApiKey;
|
|
}
|
|
|
|
if (reverseProxyUrl) {
|
|
baseURL = extractBaseURL(reverseProxyUrl);
|
|
}
|
|
|
|
const modelsCache = getLogStores(CacheKeys.MODEL_QUERIES);
|
|
|
|
const cachedModels = await modelsCache.get(baseURL);
|
|
if (cachedModels) {
|
|
return cachedModels;
|
|
}
|
|
|
|
if (baseURL || opts.azure) {
|
|
models = await fetchModels({
|
|
apiKey,
|
|
baseURL,
|
|
azure: opts.azure,
|
|
user: opts.user,
|
|
name: EModelEndpoint.openAI,
|
|
});
|
|
}
|
|
|
|
if (models.length === 0) {
|
|
return _models;
|
|
}
|
|
|
|
if (baseURL === openaiBaseURL) {
|
|
const regex = /(text-davinci-003|gpt-|o\d+)/;
|
|
const excludeRegex = /audio|realtime/;
|
|
models = models.filter((model) => regex.test(model) && !excludeRegex.test(model));
|
|
const instructModels = models.filter((model) => model.includes('instruct'));
|
|
const otherModels = models.filter((model) => !model.includes('instruct'));
|
|
models = otherModels.concat(instructModels);
|
|
}
|
|
|
|
await modelsCache.set(baseURL, models);
|
|
return models;
|
|
};
|
|
|
|
/**
|
|
* Loads the default models for the application.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {boolean} [opts.azure=false] - Whether to fetch models from Azure.
|
|
* @param {boolean} [opts.assistants=false] - Whether to fetch models for the Assistants endpoint.
|
|
*/
|
|
const getOpenAIModels = async (opts) => {
|
|
let models = defaultModels[EModelEndpoint.openAI];
|
|
|
|
if (opts.assistants) {
|
|
models = defaultModels[EModelEndpoint.assistants];
|
|
} else if (opts.azure) {
|
|
models = defaultModels[EModelEndpoint.azureAssistants];
|
|
}
|
|
|
|
let key;
|
|
if (opts.assistants) {
|
|
key = 'ASSISTANTS_MODELS';
|
|
} else if (opts.azure) {
|
|
key = 'AZURE_OPENAI_MODELS';
|
|
} else {
|
|
key = 'OPENAI_MODELS';
|
|
}
|
|
|
|
if (process.env[key]) {
|
|
models = splitAndTrim(process.env[key]);
|
|
return models;
|
|
}
|
|
|
|
if (config.userProvidedOpenAI) {
|
|
return models;
|
|
}
|
|
|
|
return await fetchOpenAIModels(opts, models);
|
|
};
|
|
|
|
/**
|
|
* Fetches models from the Anthropic API.
|
|
* @async
|
|
* @function
|
|
* @param {object} opts - The options for fetching the models.
|
|
* @param {string} opts.user - The user ID to send to the API.
|
|
* @param {string[]} [_models=[]] - The models to use as a fallback.
|
|
*/
|
|
const fetchAnthropicModels = async (opts, _models = []) => {
|
|
let models = _models.slice() ?? [];
|
|
let apiKey = process.env.ANTHROPIC_API_KEY;
|
|
const anthropicBaseURL = 'https://api.anthropic.com/v1';
|
|
let baseURL = anthropicBaseURL;
|
|
let reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
|
|
|
|
if (reverseProxyUrl) {
|
|
baseURL = extractBaseURL(reverseProxyUrl);
|
|
}
|
|
|
|
if (!apiKey) {
|
|
return models;
|
|
}
|
|
|
|
const modelsCache = getLogStores(CacheKeys.MODEL_QUERIES);
|
|
|
|
const cachedModels = await modelsCache.get(baseURL);
|
|
if (cachedModels) {
|
|
return cachedModels;
|
|
}
|
|
|
|
if (baseURL) {
|
|
models = await fetchModels({
|
|
apiKey,
|
|
baseURL,
|
|
user: opts.user,
|
|
name: EModelEndpoint.anthropic,
|
|
tokenKey: EModelEndpoint.anthropic,
|
|
});
|
|
}
|
|
|
|
if (models.length === 0) {
|
|
return _models;
|
|
}
|
|
|
|
await modelsCache.set(baseURL, models);
|
|
return models;
|
|
};
|
|
|
|
const getAnthropicModels = async (opts = {}) => {
|
|
let models = defaultModels[EModelEndpoint.anthropic];
|
|
if (process.env.ANTHROPIC_MODELS) {
|
|
models = splitAndTrim(process.env.ANTHROPIC_MODELS);
|
|
return models;
|
|
}
|
|
|
|
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
|
|
return models;
|
|
}
|
|
|
|
try {
|
|
return await fetchAnthropicModels(opts, models);
|
|
} catch (error) {
|
|
logger.error('Error fetching Anthropic models:', error);
|
|
return models;
|
|
}
|
|
};
|
|
|
|
const getGoogleModels = () => {
|
|
let models = defaultModels[EModelEndpoint.google];
|
|
if (process.env.GOOGLE_MODELS) {
|
|
models = splitAndTrim(process.env.GOOGLE_MODELS);
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
const getBedrockModels = () => {
|
|
let models = defaultModels[EModelEndpoint.bedrock];
|
|
if (process.env.BEDROCK_AWS_MODELS) {
|
|
models = splitAndTrim(process.env.BEDROCK_AWS_MODELS);
|
|
}
|
|
|
|
return models;
|
|
};
|
|
|
|
module.exports = {
|
|
fetchModels,
|
|
splitAndTrim,
|
|
getOpenAIModels,
|
|
getGoogleModels,
|
|
getBedrockModels,
|
|
getAnthropicModels,
|
|
};
|