mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-09-22 06:00:56 +02:00

* feat: add GOOGLE_MODELS env var * feat: add gemini vision support * refactor(GoogleClient): adjust clientOptions handling depending on model * fix(logger): fix redact logic and redact errors only * fix(GoogleClient): do not allow non-multiModal messages when gemini-pro-vision is selected * refactor(OpenAIClient): use `isVisionModel` client property to avoid calling validateVisionModel multiple times * refactor: better debug logging by correctly traversing, redacting sensitive info, and logging condensed versions of long values * refactor(GoogleClient): allow response errors to be thrown/caught above client handling so user receives meaningful error message debug orderedMessages, parentMessageId, and buildMessages result * refactor(AskController): use model from client.modelOptions.model when saving intermediate messages, which requires for the progress callback to be initialized after the client is initialized * feat(useSSE): revert to previous model if the model was auto-switched by backend due to message attachments * docs: update with google updates, notes about Gemini Pro Vision * fix: redis should not be initialized without USE_REDIS and increase max listeners to 20
596 lines
19 KiB
JavaScript
596 lines
19 KiB
JavaScript
const { google } = require('googleapis');
|
|
const { Agent, ProxyAgent } = require('undici');
|
|
const { GoogleVertexAI } = require('langchain/llms/googlevertexai');
|
|
const { ChatGoogleGenerativeAI } = require('@langchain/google-genai');
|
|
const { ChatGoogleVertexAI } = require('langchain/chat_models/googlevertexai');
|
|
const { AIMessage, HumanMessage, SystemMessage } = require('langchain/schema');
|
|
const { encodeAndFormat, validateVisionModel } = require('~/server/services/Files/images');
|
|
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
|
|
const {
|
|
getResponseSender,
|
|
EModelEndpoint,
|
|
endpointSettings,
|
|
AuthKeys,
|
|
} = require('librechat-data-provider');
|
|
const { getModelMaxTokens } = require('~/utils');
|
|
const { formatMessage } = require('./prompts');
|
|
const BaseClient = require('./BaseClient');
|
|
const { logger } = require('~/config');
|
|
|
|
const loc = 'us-central1';
|
|
const publisher = 'google';
|
|
const endpointPrefix = `https://${loc}-aiplatform.googleapis.com`;
|
|
// const apiEndpoint = loc + '-aiplatform.googleapis.com';
|
|
const tokenizersCache = {};
|
|
|
|
const settings = endpointSettings[EModelEndpoint.google];
|
|
|
|
class GoogleClient extends BaseClient {
|
|
constructor(credentials, options = {}) {
|
|
super('apiKey', options);
|
|
let creds = {};
|
|
|
|
if (typeof credentials === 'string') {
|
|
creds = JSON.parse(credentials);
|
|
} else if (credentials) {
|
|
creds = credentials;
|
|
}
|
|
|
|
const serviceKey = creds[AuthKeys.GOOGLE_SERVICE_KEY] ?? {};
|
|
this.serviceKey =
|
|
serviceKey && typeof serviceKey === 'string' ? JSON.parse(serviceKey) : serviceKey ?? {};
|
|
this.client_email = this.serviceKey.client_email;
|
|
this.private_key = this.serviceKey.private_key;
|
|
this.project_id = this.serviceKey.project_id;
|
|
this.access_token = null;
|
|
|
|
this.apiKey = creds[AuthKeys.GOOGLE_API_KEY];
|
|
|
|
if (options.skipSetOptions) {
|
|
return;
|
|
}
|
|
this.setOptions(options);
|
|
}
|
|
|
|
/* Google specific methods */
|
|
constructUrl() {
|
|
return `${endpointPrefix}/v1/projects/${this.project_id}/locations/${loc}/publishers/${publisher}/models/${this.modelOptions.model}:serverStreamingPredict`;
|
|
}
|
|
|
|
async getClient() {
|
|
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
|
|
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
|
|
|
|
jwtClient.authorize((err) => {
|
|
if (err) {
|
|
logger.error('jwtClient failed to authorize', err);
|
|
throw err;
|
|
}
|
|
});
|
|
|
|
return jwtClient;
|
|
}
|
|
|
|
async getAccessToken() {
|
|
const scopes = ['https://www.googleapis.com/auth/cloud-platform'];
|
|
const jwtClient = new google.auth.JWT(this.client_email, null, this.private_key, scopes);
|
|
|
|
return new Promise((resolve, reject) => {
|
|
jwtClient.authorize((err, tokens) => {
|
|
if (err) {
|
|
logger.error('jwtClient failed to authorize', err);
|
|
reject(err);
|
|
} else {
|
|
resolve(tokens.access_token);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
/* Required Client methods */
|
|
setOptions(options) {
|
|
if (this.options && !this.options.replaceOptions) {
|
|
// nested options aren't spread properly, so we need to do this manually
|
|
this.options.modelOptions = {
|
|
...this.options.modelOptions,
|
|
...options.modelOptions,
|
|
};
|
|
delete options.modelOptions;
|
|
// now we can merge options
|
|
this.options = {
|
|
...this.options,
|
|
...options,
|
|
};
|
|
} else {
|
|
this.options = options;
|
|
}
|
|
|
|
this.options.examples = (this.options.examples ?? [])
|
|
.filter((ex) => ex)
|
|
.filter((obj) => obj.input.content !== '' && obj.output.content !== '');
|
|
|
|
const modelOptions = this.options.modelOptions || {};
|
|
this.modelOptions = {
|
|
...modelOptions,
|
|
// set some good defaults (check for undefined in some cases because they may be 0)
|
|
model: modelOptions.model || settings.model.default,
|
|
temperature:
|
|
typeof modelOptions.temperature === 'undefined'
|
|
? settings.temperature.default
|
|
: modelOptions.temperature,
|
|
topP: typeof modelOptions.topP === 'undefined' ? settings.topP.default : modelOptions.topP,
|
|
topK: typeof modelOptions.topK === 'undefined' ? settings.topK.default : modelOptions.topK,
|
|
// stop: modelOptions.stop // no stop method for now
|
|
};
|
|
|
|
if (this.options.attachments) {
|
|
this.modelOptions.model = 'gemini-pro-vision';
|
|
}
|
|
|
|
// TODO: as of 12/14/23, only gemini models are "Generative AI" models provided by Google
|
|
this.isGenerativeModel = this.modelOptions.model.includes('gemini');
|
|
this.isVisionModel = validateVisionModel(this.modelOptions.model);
|
|
const { isGenerativeModel } = this;
|
|
if (this.isVisionModel && !this.options.attachments) {
|
|
this.modelOptions.model = 'gemini-pro';
|
|
this.isVisionModel = false;
|
|
}
|
|
this.isChatModel = !isGenerativeModel && this.modelOptions.model.includes('chat');
|
|
const { isChatModel } = this;
|
|
this.isTextModel =
|
|
!isGenerativeModel && !isChatModel && /code|text/.test(this.modelOptions.model);
|
|
const { isTextModel } = this;
|
|
|
|
this.maxContextTokens = getModelMaxTokens(this.modelOptions.model, EModelEndpoint.google);
|
|
// The max prompt tokens is determined by the max context tokens minus the max response tokens.
|
|
// Earlier messages will be dropped until the prompt is within the limit.
|
|
this.maxResponseTokens = this.modelOptions.maxOutputTokens || settings.maxOutputTokens.default;
|
|
|
|
if (this.maxContextTokens > 32000) {
|
|
this.maxContextTokens = this.maxContextTokens - this.maxResponseTokens;
|
|
}
|
|
|
|
this.maxPromptTokens =
|
|
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
|
|
|
|
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
|
|
throw new Error(
|
|
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
|
|
this.maxPromptTokens + this.maxResponseTokens
|
|
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
|
|
);
|
|
}
|
|
|
|
this.sender =
|
|
this.options.sender ??
|
|
getResponseSender({
|
|
model: this.modelOptions.model,
|
|
endpoint: EModelEndpoint.google,
|
|
modelLabel: this.options.modelLabel,
|
|
});
|
|
|
|
this.userLabel = this.options.userLabel || 'User';
|
|
this.modelLabel = this.options.modelLabel || 'Assistant';
|
|
|
|
if (isChatModel || isGenerativeModel) {
|
|
// Use these faux tokens to help the AI understand the context since we are building the chat log ourselves.
|
|
// Trying to use "<|im_start|>" causes the AI to still generate "<" or "<|" at the end sometimes for some reason,
|
|
// without tripping the stop sequences, so I'm using "||>" instead.
|
|
this.startToken = '||>';
|
|
this.endToken = '';
|
|
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
|
|
} else if (isTextModel) {
|
|
this.startToken = '||>';
|
|
this.endToken = '';
|
|
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true, {
|
|
'<|im_start|>': 100264,
|
|
'<|im_end|>': 100265,
|
|
});
|
|
} else {
|
|
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting
|
|
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated
|
|
// as a single token. So we're using this instead.
|
|
this.startToken = '||>';
|
|
this.endToken = '';
|
|
try {
|
|
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
|
|
} catch {
|
|
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true);
|
|
}
|
|
}
|
|
|
|
if (!this.modelOptions.stop) {
|
|
const stopTokens = [this.startToken];
|
|
if (this.endToken && this.endToken !== this.startToken) {
|
|
stopTokens.push(this.endToken);
|
|
}
|
|
stopTokens.push(`\n${this.userLabel}:`);
|
|
stopTokens.push('<|diff_marker|>');
|
|
// I chose not to do one for `modelLabel` because I've never seen it happen
|
|
this.modelOptions.stop = stopTokens;
|
|
}
|
|
|
|
if (this.options.reverseProxyUrl) {
|
|
this.completionsUrl = this.options.reverseProxyUrl;
|
|
} else {
|
|
this.completionsUrl = this.constructUrl();
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
formatMessages() {
|
|
return ((message) => ({
|
|
author: message?.author ?? (message.isCreatedByUser ? this.userLabel : this.modelLabel),
|
|
content: message?.content ?? message.text,
|
|
})).bind(this);
|
|
}
|
|
|
|
async buildVisionMessages(messages = [], parentMessageId) {
|
|
const { prompt } = await this.buildMessagesPrompt(messages, parentMessageId);
|
|
const attachments = await this.options.attachments;
|
|
const { files, image_urls } = await encodeAndFormat(
|
|
this.options.req,
|
|
attachments.filter((file) => file.type.includes('image')),
|
|
EModelEndpoint.google,
|
|
);
|
|
|
|
const latestMessage = { ...messages[messages.length - 1] };
|
|
|
|
latestMessage.image_urls = image_urls;
|
|
this.options.attachments = files;
|
|
|
|
latestMessage.text = prompt;
|
|
|
|
const payload = {
|
|
instances: [
|
|
{
|
|
messages: [new HumanMessage(formatMessage({ message: latestMessage }))],
|
|
},
|
|
],
|
|
parameters: this.modelOptions,
|
|
};
|
|
return { prompt: payload };
|
|
}
|
|
|
|
async buildMessages(messages = [], parentMessageId) {
|
|
if (!this.isGenerativeModel && !this.project_id) {
|
|
throw new Error(
|
|
'[GoogleClient] a Service Account JSON Key is required for PaLM 2 and Codey models (Vertex AI)',
|
|
);
|
|
} else if (this.isGenerativeModel && (!this.apiKey || this.apiKey === 'user_provided')) {
|
|
throw new Error(
|
|
'[GoogleClient] an API Key is required for Gemini models (Generative Language API)',
|
|
);
|
|
}
|
|
|
|
if (this.options.attachments) {
|
|
return this.buildVisionMessages(messages, parentMessageId);
|
|
}
|
|
|
|
if (this.isTextModel) {
|
|
return this.buildMessagesPrompt(messages, parentMessageId);
|
|
}
|
|
|
|
let payload = {
|
|
instances: [
|
|
{
|
|
messages: messages
|
|
.map(this.formatMessages())
|
|
.map((msg) => ({ ...msg, role: msg.author === 'User' ? 'user' : 'assistant' }))
|
|
.map((message) => formatMessage({ message, langChain: true })),
|
|
},
|
|
],
|
|
parameters: this.modelOptions,
|
|
};
|
|
|
|
if (this.options.promptPrefix) {
|
|
payload.instances[0].context = this.options.promptPrefix;
|
|
}
|
|
|
|
if (this.options.examples.length > 0) {
|
|
payload.instances[0].examples = this.options.examples;
|
|
}
|
|
|
|
logger.debug('[GoogleClient] buildMessages', payload);
|
|
|
|
return { prompt: payload };
|
|
}
|
|
|
|
async buildMessagesPrompt(messages, parentMessageId) {
|
|
const orderedMessages = this.constructor.getMessagesForConversation({
|
|
messages,
|
|
parentMessageId,
|
|
});
|
|
|
|
logger.debug('[GoogleClient]', {
|
|
orderedMessages,
|
|
parentMessageId,
|
|
});
|
|
|
|
const formattedMessages = orderedMessages.map((message) => ({
|
|
author: message.isCreatedByUser ? this.userLabel : this.modelLabel,
|
|
content: message?.content ?? message.text,
|
|
}));
|
|
|
|
let lastAuthor = '';
|
|
let groupedMessages = [];
|
|
|
|
for (let message of formattedMessages) {
|
|
// If last author is not same as current author, add to new group
|
|
if (lastAuthor !== message.author) {
|
|
groupedMessages.push({
|
|
author: message.author,
|
|
content: [message.content],
|
|
});
|
|
lastAuthor = message.author;
|
|
// If same author, append content to the last group
|
|
} else {
|
|
groupedMessages[groupedMessages.length - 1].content.push(message.content);
|
|
}
|
|
}
|
|
|
|
let identityPrefix = '';
|
|
if (this.options.userLabel) {
|
|
identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
|
|
}
|
|
|
|
if (this.options.modelLabel) {
|
|
identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
|
|
}
|
|
|
|
let promptPrefix = (this.options.promptPrefix || '').trim();
|
|
if (promptPrefix) {
|
|
// If the prompt prefix doesn't end with the end token, add it.
|
|
if (!promptPrefix.endsWith(`${this.endToken}`)) {
|
|
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
|
|
}
|
|
promptPrefix = `\nContext:\n${promptPrefix}`;
|
|
}
|
|
|
|
if (identityPrefix) {
|
|
promptPrefix = `${identityPrefix}${promptPrefix}`;
|
|
}
|
|
|
|
// Prompt AI to respond, empty if last message was from AI
|
|
let isEdited = lastAuthor === this.modelLabel;
|
|
const promptSuffix = isEdited ? '' : `${promptPrefix}\n\n${this.modelLabel}:\n`;
|
|
let currentTokenCount = isEdited
|
|
? this.getTokenCount(promptPrefix)
|
|
: this.getTokenCount(promptSuffix);
|
|
|
|
let promptBody = '';
|
|
const maxTokenCount = this.maxPromptTokens;
|
|
|
|
const context = [];
|
|
|
|
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
|
|
// Do this within a recursive async function so that it doesn't block the event loop for too long.
|
|
// Also, remove the next message when the message that puts us over the token limit is created by the user.
|
|
// Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
|
|
const nextMessage = {
|
|
remove: false,
|
|
tokenCount: 0,
|
|
messageString: '',
|
|
};
|
|
|
|
const buildPromptBody = async () => {
|
|
if (currentTokenCount < maxTokenCount && groupedMessages.length > 0) {
|
|
const message = groupedMessages.pop();
|
|
const isCreatedByUser = message.author === this.userLabel;
|
|
// Use promptPrefix if message is edited assistant'
|
|
const messagePrefix =
|
|
isCreatedByUser || !isEdited
|
|
? `\n\n${message.author}:`
|
|
: `${promptPrefix}\n\n${message.author}:`;
|
|
const messageString = `${messagePrefix}\n${message.content}${this.endToken}\n`;
|
|
let newPromptBody = `${messageString}${promptBody}`;
|
|
|
|
context.unshift(message);
|
|
|
|
const tokenCountForMessage = this.getTokenCount(messageString);
|
|
const newTokenCount = currentTokenCount + tokenCountForMessage;
|
|
|
|
if (!isCreatedByUser) {
|
|
nextMessage.messageString = messageString;
|
|
nextMessage.tokenCount = tokenCountForMessage;
|
|
}
|
|
|
|
if (newTokenCount > maxTokenCount) {
|
|
if (!promptBody) {
|
|
// This is the first message, so we can't add it. Just throw an error.
|
|
throw new Error(
|
|
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
|
|
);
|
|
}
|
|
|
|
// Otherwise, ths message would put us over the token limit, so don't add it.
|
|
// if created by user, remove next message, otherwise remove only this message
|
|
if (isCreatedByUser) {
|
|
nextMessage.remove = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
promptBody = newPromptBody;
|
|
currentTokenCount = newTokenCount;
|
|
|
|
// Switch off isEdited after using it for the first time
|
|
if (isEdited) {
|
|
isEdited = false;
|
|
}
|
|
|
|
// wait for next tick to avoid blocking the event loop
|
|
await new Promise((resolve) => setImmediate(resolve));
|
|
return buildPromptBody();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
await buildPromptBody();
|
|
|
|
if (nextMessage.remove) {
|
|
promptBody = promptBody.replace(nextMessage.messageString, '');
|
|
currentTokenCount -= nextMessage.tokenCount;
|
|
context.shift();
|
|
}
|
|
|
|
let prompt = `${promptBody}${promptSuffix}`.trim();
|
|
|
|
// Add 2 tokens for metadata after all messages have been counted.
|
|
currentTokenCount += 2;
|
|
|
|
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
|
|
this.modelOptions.maxOutputTokens = Math.min(
|
|
this.maxContextTokens - currentTokenCount,
|
|
this.maxResponseTokens,
|
|
);
|
|
|
|
return { prompt, context };
|
|
}
|
|
|
|
async _getCompletion(payload, abortController = null) {
|
|
if (!abortController) {
|
|
abortController = new AbortController();
|
|
}
|
|
const { debug } = this.options;
|
|
const url = this.completionsUrl;
|
|
if (debug) {
|
|
logger.debug('GoogleClient _getCompletion', { url, payload });
|
|
}
|
|
const opts = {
|
|
method: 'POST',
|
|
agent: new Agent({
|
|
bodyTimeout: 0,
|
|
headersTimeout: 0,
|
|
}),
|
|
signal: abortController.signal,
|
|
};
|
|
|
|
if (this.options.proxy) {
|
|
opts.agent = new ProxyAgent(this.options.proxy);
|
|
}
|
|
|
|
const client = await this.getClient();
|
|
const res = await client.request({ url, method: 'POST', data: payload });
|
|
logger.debug('GoogleClient _getCompletion', { res });
|
|
return res.data;
|
|
}
|
|
|
|
createLLM(clientOptions) {
|
|
if (this.isGenerativeModel) {
|
|
return new ChatGoogleGenerativeAI({ ...clientOptions, apiKey: this.apiKey });
|
|
}
|
|
|
|
return this.isTextModel
|
|
? new GoogleVertexAI(clientOptions)
|
|
: new ChatGoogleVertexAI(clientOptions);
|
|
}
|
|
|
|
async getCompletion(_payload, options = {}) {
|
|
const { onProgress, abortController } = options;
|
|
const { parameters, instances } = _payload;
|
|
const { messages: _messages, context, examples: _examples } = instances?.[0] ?? {};
|
|
|
|
let examples;
|
|
|
|
let clientOptions = { ...parameters, maxRetries: 2 };
|
|
|
|
if (!this.isGenerativeModel) {
|
|
clientOptions['authOptions'] = {
|
|
credentials: {
|
|
...this.serviceKey,
|
|
},
|
|
projectId: this.project_id,
|
|
};
|
|
}
|
|
|
|
if (!parameters) {
|
|
clientOptions = { ...clientOptions, ...this.modelOptions };
|
|
}
|
|
|
|
if (this.isGenerativeModel) {
|
|
clientOptions.modelName = clientOptions.model;
|
|
delete clientOptions.model;
|
|
}
|
|
|
|
if (_examples && _examples.length) {
|
|
examples = _examples
|
|
.map((ex) => {
|
|
const { input, output } = ex;
|
|
if (!input || !output) {
|
|
return undefined;
|
|
}
|
|
return {
|
|
input: new HumanMessage(input.content),
|
|
output: new AIMessage(output.content),
|
|
};
|
|
})
|
|
.filter((ex) => ex);
|
|
|
|
clientOptions.examples = examples;
|
|
}
|
|
|
|
const model = this.createLLM(clientOptions);
|
|
|
|
let reply = '';
|
|
const messages = this.isTextModel ? _payload.trim() : _messages;
|
|
|
|
if (!this.isVisionModel && context && messages?.length > 0) {
|
|
messages.unshift(new SystemMessage(context));
|
|
}
|
|
|
|
const stream = await model.stream(messages, {
|
|
signal: abortController.signal,
|
|
timeout: 7000,
|
|
});
|
|
|
|
for await (const chunk of stream) {
|
|
await this.generateTextStream(chunk?.content ?? chunk, onProgress, {
|
|
delay: this.isGenerativeModel ? 12 : 8,
|
|
});
|
|
reply += chunk?.content ?? chunk;
|
|
}
|
|
|
|
return reply;
|
|
}
|
|
|
|
getSaveOptions() {
|
|
return {
|
|
promptPrefix: this.options.promptPrefix,
|
|
modelLabel: this.options.modelLabel,
|
|
...this.modelOptions,
|
|
};
|
|
}
|
|
|
|
getBuildMessagesOptions() {
|
|
// logger.debug('GoogleClient doesn\'t use getBuildMessagesOptions');
|
|
}
|
|
|
|
async sendCompletion(payload, opts = {}) {
|
|
let reply = '';
|
|
reply = await this.getCompletion(payload, opts);
|
|
return reply.trim();
|
|
}
|
|
|
|
/* TO-DO: Handle tokens with Google tokenization NOTE: these are required */
|
|
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
|
|
if (tokenizersCache[encoding]) {
|
|
return tokenizersCache[encoding];
|
|
}
|
|
let tokenizer;
|
|
if (isModelName) {
|
|
tokenizer = encodingForModel(encoding, extendSpecialTokens);
|
|
} else {
|
|
tokenizer = getEncoding(encoding, extendSpecialTokens);
|
|
}
|
|
tokenizersCache[encoding] = tokenizer;
|
|
return tokenizer;
|
|
}
|
|
|
|
getTokenCount(text) {
|
|
return this.gptEncoder.encode(text, 'all').length;
|
|
}
|
|
}
|
|
|
|
module.exports = GoogleClient;
|