LibreChat/api/models/tx.js
Danny Avila d59b62174f
🪨 feat: AWS Bedrock support (#3935)
* feat: Add BedrockIcon component to SVG library

* feat: EModelEndpoint.bedrock

* feat: first pass, bedrock chat. note: AgentClient is returning `agents` as conversation.endpoint

* fix: declare endpoint in initialization step

* chore: Update @librechat/agents dependency to version 1.4.5

* feat: backend content aggregation for agents/bedrock

* feat: abort agent requests

* feat: AWS Bedrock icons

* WIP: agent provider schema parsing

* chore: Update EditIcon props type

* refactor(useGenerationsByLatest): make agents and bedrock editable

* refactor: non-assistant message content, parts

* fix: Bedrock response `sender`

* fix: use endpointOption.model_parameters not endpointOption.modelOptions

* fix: types for step handler

* refactor: Update Agents.ToolCallDelta type

* refactor: Remove unnecessary assignment of parentMessageId in AskController

* refactor: remove unnecessary assignment of parentMessageId (agent request handler)

* fix(bedrock/agents): message regeneration

* refactor: dynamic form elements using react-hook-form Controllers

* fix: agent icons/labels for messages

* fix: agent actions

* fix: use of new dynamic tags causing application crash

* refactor: dynamic settings touch-ups

* refactor: update Slider component to allow custom track class name

* refactor: update DynamicSlider component styles

* refactor: use Constants value for GLOBAL_PROJECT_NAME (enum)

* feat: agent share global methods/controllers

* fix: agents query

* fix: `getResponseModel`

* fix: share prompt a11y issue

* refactor: update SharePrompt dialog theme styles

* refactor: explicit typing for SharePrompt

* feat: add agent roles/permissions

* chore: update @librechat/agents dependency to version 1.4.7 for tool_call_ids edge case

* fix(Anthropic): messages.X.content.Y.tool_use.input: Input should be a valid dictionary

* fix: handle text parts with tool_call_ids and empty text

* fix: role initialization

* refactor: don't make instructions required

* refactor: improve typing of Text part

* fix: setShowStopButton for agents route

* chore: remove params for now

* fix: add streamBuffer and streamRate to help prevent 'Overloaded' errors from Anthropic API

* refactor: remove console.log statement in ContentRender component

* chore: typing, rename Context to Delete Button

* chore(DeleteButton): logging

* refactor(Action): make accessible

* style(Action): improve a11y again

* refactor: remove use/mention of mongoose sessions

* feat: first pass, sharing agents

* feat: visual indicator for global agent, remove author when serving to non-author

* wip: params

* chore: fix typing issues

* fix(schemas): typing

* refactor: improve accessibility of ListCard component and fix console React warning

* wip: reset templates for non-legacy new convos

* Revert "wip: params"

This reverts commit f8067e91d4.

* Revert "refactor: dynamic form elements using react-hook-form Controllers"

This reverts commit 2150c4815d.

* fix(Parameters): types and parameter effect update to only update local state to parameters

* refactor: optimize useDebouncedInput hook for better performance

* feat: first pass, anthropic bedrock params

* chore: paramEndpoints check for endpointType too

* fix: maxTokens to use coerceNumber.optional(),

* feat: extra chat model params

* chore: reduce code repetition

* refactor: improve preset title handling in SaveAsPresetDialog component

* refactor: improve preset handling in HeaderOptions component

* chore: improve typing, replace legacy dialog for SaveAsPresetDialog

* feat: save as preset from parameters panel

* fix: multi-search in select dropdown when using Option type

* refactor: update default showDefault value to false in Dynamic components

* feat: Bedrock presets settings

* chore: config, fix agents schema, update config version

* refactor: update AWS region variable name in bedrock options endpoint to BEDROCK_AWS_DEFAULT_REGION

* refactor: update baseEndpointSchema in config.ts to include baseURL property

* refactor: update createRun function to include req parameter and set streamRate based on provider

* feat: availableRegions via config

* refactor: remove unused demo agent controller file

* WIP: title

* Update @librechat/agents to version 1.5.0

* chore: addTitle.js to handle empty responseText

* feat: support images and titles

* feat: context token updates

* Refactor BaseClient test to use expect.objectContaining

* refactor: add model select, remove header options params, move side panel params below prompts

* chore: update models list, catch title error

* feat: model service for bedrock models (env)

* chore: Remove verbose debug log in AgentClient class following stream

* feat(bedrock): track token spend; fix: token rates, value key mapping for AWS models

* refactor: handle streamRate in `handleLLMNewToken` callback

* chore: AWS Bedrock example config in `.env.example`

* refactor: Rename bedrockMeta to bedrockGeneral in settings.ts and use for AI21 and Amazon Bedrock providers

* refactor: Update `.env.example` with AWS Bedrock model IDs URL and additional notes

* feat: titleModel support for bedrock

* refactor: Update `.env.example` with additional notes for AWS Bedrock model IDs
2024-09-09 12:06:59 -04:00

191 lines
7.6 KiB
JavaScript

const { matchModelName } = require('../utils');
const defaultRate = 6;
/** AWS Bedrock pricing */
const bedrockValues = {
'llama2-13b': { prompt: 0.75, completion: 1.0 },
'llama2-70b': { prompt: 1.95, completion: 2.56 },
'llama3-8b': { prompt: 0.3, completion: 0.6 },
'llama3-70b': { prompt: 2.65, completion: 3.5 },
'llama3-1-8b': { prompt: 0.3, completion: 0.6 },
'llama3-1-70b': { prompt: 2.65, completion: 3.5 },
'llama3-1-405b': { prompt: 5.32, completion: 16.0 },
'mistral-7b': { prompt: 0.15, completion: 0.2 },
'mistral-small': { prompt: 0.15, completion: 0.2 },
'mixtral-8x7b': { prompt: 0.45, completion: 0.7 },
'mistral-large-2402': { prompt: 4.0, completion: 12.0 },
'mistral-large-2407': { prompt: 3.0, completion: 9.0 },
'command-text': { prompt: 1.5, completion: 2.0 },
'command-light': { prompt: 0.3, completion: 0.6 },
'ai21.j2-mid-v1': { prompt: 12.5, completion: 12.5 },
'ai21.j2-ultra-v1': { prompt: 18.8, completion: 18.8 },
'ai21.jamba-instruct-v1:0': { prompt: 0.5, completion: 0.7 },
'amazon.titan-text-lite-v1': { prompt: 0.15, completion: 0.2 },
'amazon.titan-text-express-v1': { prompt: 0.2, completion: 0.6 },
'amazon.titan-text-premier-v1:0': { prompt: 0.5, completion: 1.5 },
};
/**
* Mapping of model token sizes to their respective multipliers for prompt and completion.
* The rates are 1 USD per 1M tokens.
* @type {Object.<string, {prompt: number, completion: number}>}
*/
const tokenValues = Object.assign(
{
'8k': { prompt: 30, completion: 60 },
'32k': { prompt: 60, completion: 120 },
'4k': { prompt: 1.5, completion: 2 },
'16k': { prompt: 3, completion: 4 },
'gpt-3.5-turbo-1106': { prompt: 1, completion: 2 },
'gpt-4o-2024-08-06': { prompt: 2.5, completion: 10 },
'gpt-4o-mini': { prompt: 0.15, completion: 0.6 },
'gpt-4o': { prompt: 5, completion: 15 },
'gpt-4-1106': { prompt: 10, completion: 30 },
'gpt-3.5-turbo-0125': { prompt: 0.5, completion: 1.5 },
'claude-3-opus': { prompt: 15, completion: 75 },
'claude-3-sonnet': { prompt: 3, completion: 15 },
'claude-3-5-sonnet': { prompt: 3, completion: 15 },
'claude-3.5-sonnet': { prompt: 3, completion: 15 },
'claude-3-haiku': { prompt: 0.25, completion: 1.25 },
'claude-2.1': { prompt: 8, completion: 24 },
'claude-2': { prompt: 8, completion: 24 },
'claude-instant': { prompt: 0.8, completion: 2.4 },
'claude-': { prompt: 0.8, completion: 2.4 },
'command-r-plus': { prompt: 3, completion: 15 },
'command-r': { prompt: 0.5, completion: 1.5 },
/* cohere doesn't have rates for the older command models,
so this was from https://artificialanalysis.ai/models/command-light/providers */
command: { prompt: 0.38, completion: 0.38 },
'gemini-1.5': { prompt: 7, completion: 21 }, // May 2nd, 2024 pricing
gemini: { prompt: 0.5, completion: 1.5 }, // May 2nd, 2024 pricing
},
bedrockValues,
);
/**
* Mapping of model token sizes to their respective multipliers for cached input, read and write.
* See Anthropic's documentation on this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#pricing
* The rates are 1 USD per 1M tokens.
* @type {Object.<string, {write: number, read: number }>}
*/
const cacheTokenValues = {
'claude-3.5-sonnet': { write: 3.75, read: 0.3 },
'claude-3-5-sonnet': { write: 3.75, read: 0.3 },
'claude-3-haiku': { write: 0.3, read: 0.03 },
};
/**
* Retrieves the key associated with a given model name.
*
* @param {string} model - The model name to match.
* @param {string} endpoint - The endpoint name to match.
* @returns {string|undefined} The key corresponding to the model name, or undefined if no match is found.
*/
const getValueKey = (model, endpoint) => {
const modelName = matchModelName(model, endpoint);
if (!modelName) {
return undefined;
}
if (modelName.includes('gpt-3.5-turbo-16k')) {
return '16k';
} else if (modelName.includes('gpt-3.5-turbo-0125')) {
return 'gpt-3.5-turbo-0125';
} else if (modelName.includes('gpt-3.5-turbo-1106')) {
return 'gpt-3.5-turbo-1106';
} else if (modelName.includes('gpt-3.5')) {
return '4k';
} else if (modelName.includes('gpt-4o-2024-08-06')) {
return 'gpt-4o-2024-08-06';
} else if (modelName.includes('gpt-4o-mini')) {
return 'gpt-4o-mini';
} else if (modelName.includes('gpt-4o')) {
return 'gpt-4o';
} else if (modelName.includes('gpt-4-vision')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-1106')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-0125')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-turbo')) {
return 'gpt-4-1106';
} else if (modelName.includes('gpt-4-32k')) {
return '32k';
} else if (modelName.includes('gpt-4')) {
return '8k';
} else if (tokenValues[modelName]) {
return modelName;
}
return undefined;
};
/**
* Retrieves the multiplier for a given value key and token type. If no value key is provided,
* it attempts to derive it from the model name.
*
* @param {Object} params - The parameters for the function.
* @param {string} [params.valueKey] - The key corresponding to the model name.
* @param {'prompt' | 'completion'} [params.tokenType] - The type of token (e.g., 'prompt' or 'completion').
* @param {string} [params.model] - The model name to derive the value key from if not provided.
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
* @returns {number} The multiplier for the given parameters, or a default value if not found.
*/
const getMultiplier = ({ valueKey, tokenType, model, endpoint, endpointTokenConfig }) => {
if (endpointTokenConfig) {
return endpointTokenConfig?.[model]?.[tokenType] ?? defaultRate;
}
if (valueKey && tokenType) {
return tokenValues[valueKey][tokenType] ?? defaultRate;
}
if (!tokenType || !model) {
return 1;
}
valueKey = getValueKey(model, endpoint);
if (!valueKey) {
return defaultRate;
}
// If we got this far, and values[tokenType] is undefined somehow, return a rough average of default multipliers
return tokenValues[valueKey]?.[tokenType] ?? defaultRate;
};
/**
* Retrieves the cache multiplier for a given value key and token type. If no value key is provided,
* it attempts to derive it from the model name.
*
* @param {Object} params - The parameters for the function.
* @param {string} [params.valueKey] - The key corresponding to the model name.
* @param {'write' | 'read'} [params.cacheType] - The type of token (e.g., 'write' or 'read').
* @param {string} [params.model] - The model name to derive the value key from if not provided.
* @param {string} [params.endpoint] - The endpoint name to derive the value key from if not provided.
* @param {EndpointTokenConfig} [params.endpointTokenConfig] - The token configuration for the endpoint.
* @returns {number | null} The multiplier for the given parameters, or `null` if not found.
*/
const getCacheMultiplier = ({ valueKey, cacheType, model, endpoint, endpointTokenConfig }) => {
if (endpointTokenConfig) {
return endpointTokenConfig?.[model]?.[cacheType] ?? null;
}
if (valueKey && cacheType) {
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
}
if (!cacheType || !model) {
return null;
}
valueKey = getValueKey(model, endpoint);
if (!valueKey) {
return null;
}
// If we got this far, and values[cacheType] is undefined somehow, return a rough average of default multipliers
return cacheTokenValues[valueKey]?.[cacheType] ?? null;
};
module.exports = { tokenValues, getValueKey, getMultiplier, getCacheMultiplier, defaultRate };