mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-16 08:20:14 +01:00
* refactor: move endpoint initialization methods to typescript * refactor: move agent init to packages/api - Introduced `initialize.ts` for agent initialization, including file processing and tool loading. - Updated `resources.ts` to allow optional appConfig parameter. - Enhanced endpoint configuration handling in various initialization files to support model parameters. - Added new artifacts and prompts for React component generation. - Refactored existing code to improve type safety and maintainability. * refactor: streamline endpoint initialization and enhance type safety - Updated initialization functions across various endpoints to use a consistent request structure, replacing `unknown` types with `ServerResponse`. - Simplified request handling by directly extracting keys from the request body. - Improved type safety by ensuring user IDs are safely accessed with optional chaining. - Removed unnecessary parameters and streamlined model options handling for better clarity and maintainability. * refactor: moved ModelService and extractBaseURL to packages/api - Added comprehensive tests for the models fetching functionality, covering scenarios for OpenAI, Anthropic, Google, and Ollama models. - Updated existing endpoint index to include the new models module. - Enhanced utility functions for URL extraction and model data processing. - Improved type safety and error handling across the models fetching logic. * refactor: consolidate utility functions and remove unused files - Merged `deriveBaseURL` and `extractBaseURL` into the `@librechat/api` module for better organization. - Removed redundant utility files and their associated tests to streamline the codebase. - Updated imports across various client files to utilize the new consolidated functions. - Enhanced overall maintainability by reducing the number of utility modules. * refactor: replace ModelService references with direct imports from @librechat/api and remove ModelService file * refactor: move encrypt/decrypt methods and key db methods to data-schemas, use `getProviderConfig` from `@librechat/api` * chore: remove unused 'res' from options in AgentClient * refactor: file model imports and methods - Updated imports in various controllers and services to use the unified file model from '~/models' instead of '~/models/File'. - Consolidated file-related methods into a new file methods module in the data-schemas package. - Added comprehensive tests for file methods including creation, retrieval, updating, and deletion. - Enhanced the initializeAgent function to accept dependency injection for file-related methods. - Improved error handling and logging in file methods. * refactor: streamline database method references in agent initialization * refactor: enhance file method tests and update type references to IMongoFile * refactor: consolidate database method imports in agent client and initialization * chore: remove redundant import of initializeAgent from @librechat/api * refactor: move checkUserKeyExpiry utility to @librechat/api and update references across endpoints * refactor: move updateUserPlugins logic to user.ts and simplify UserController * refactor: update imports for user key management and remove UserService * refactor: remove unused Anthropics and Bedrock endpoint files and clean up imports * refactor: consolidate and update encryption imports across various files to use @librechat/data-schemas * chore: update file model mock to use unified import from '~/models' * chore: import order * refactor: remove migrated to TS agent.js file and its associated logic from the endpoints * chore: add reusable function to extract imports from source code in unused-packages workflow * chore: enhance unused-packages workflow to include @librechat/api dependencies and improve dependency extraction * chore: improve dependency extraction in unused-packages workflow with enhanced error handling and debugging output * chore: add detailed debugging output to unused-packages workflow for better visibility into unused dependencies and exclusion lists * chore: refine subpath handling in unused-packages workflow to correctly process scoped and non-scoped package imports * chore: clean up unused debug output in unused-packages workflow and reorganize type imports in initialize.ts
403 lines
12 KiB
JavaScript
403 lines
12 KiB
JavaScript
const { fetchModels } = require('@librechat/api');
|
|
const loadConfigModels = require('./loadConfigModels');
|
|
const { getAppConfig } = require('./app');
|
|
|
|
jest.mock('@librechat/api', () => ({
|
|
...jest.requireActual('@librechat/api'),
|
|
fetchModels: jest.fn(),
|
|
}));
|
|
jest.mock('./app');
|
|
|
|
const exampleConfig = {
|
|
endpoints: {
|
|
custom: [
|
|
{
|
|
name: 'Mistral',
|
|
apiKey: '${MY_PRECIOUS_MISTRAL_KEY}',
|
|
baseURL: 'https://api.mistral.ai/v1',
|
|
models: {
|
|
default: ['mistral-tiny', 'mistral-small', 'mistral-medium', 'mistral-large-latest'],
|
|
fetch: true,
|
|
},
|
|
dropParams: ['stop', 'user', 'frequency_penalty', 'presence_penalty'],
|
|
},
|
|
{
|
|
name: 'OpenRouter',
|
|
apiKey: '${MY_OPENROUTER_API_KEY}',
|
|
baseURL: 'https://openrouter.ai/api/v1',
|
|
models: {
|
|
default: ['gpt-3.5-turbo'],
|
|
fetch: true,
|
|
},
|
|
dropParams: ['stop'],
|
|
},
|
|
{
|
|
name: 'groq',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'https://api.groq.com/openai/v1/',
|
|
models: {
|
|
default: ['llama2-70b-4096', 'mixtral-8x7b-32768'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
{
|
|
name: 'Ollama',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'http://localhost:11434/v1/',
|
|
models: {
|
|
default: ['mistral', 'llama2:13b'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
{
|
|
name: 'MLX',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'http://localhost:8080/v1/',
|
|
models: {
|
|
default: ['Meta-Llama-3-8B-Instruct-4bit'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
],
|
|
},
|
|
};
|
|
|
|
describe('loadConfigModels', () => {
|
|
const mockRequest = { user: { id: 'testUserId' } };
|
|
|
|
const originalEnv = process.env;
|
|
|
|
beforeEach(() => {
|
|
jest.resetAllMocks();
|
|
jest.resetModules();
|
|
process.env = { ...originalEnv };
|
|
|
|
// Default mock for getAppConfig
|
|
getAppConfig.mockResolvedValue({});
|
|
});
|
|
|
|
afterEach(() => {
|
|
process.env = originalEnv;
|
|
});
|
|
|
|
it('should return an empty object if customConfig is null', async () => {
|
|
getAppConfig.mockResolvedValue(null);
|
|
const result = await loadConfigModels(mockRequest);
|
|
expect(result).toEqual({});
|
|
});
|
|
|
|
it('handles azure models and endpoint correctly', async () => {
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
azureOpenAI: { modelNames: ['model1', 'model2'] },
|
|
},
|
|
});
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
expect(result.azureOpenAI).toEqual(['model1', 'model2']);
|
|
});
|
|
|
|
it('fetches custom models based on the unique key', async () => {
|
|
process.env.BASE_URL = 'http://example.com';
|
|
process.env.API_KEY = 'some-api-key';
|
|
const customEndpoints = [
|
|
{
|
|
baseURL: '${BASE_URL}',
|
|
apiKey: '${API_KEY}',
|
|
name: 'CustomModel',
|
|
models: { fetch: true },
|
|
},
|
|
];
|
|
|
|
getAppConfig.mockResolvedValue({ endpoints: { custom: customEndpoints } });
|
|
fetchModels.mockResolvedValue(['customModel1', 'customModel2']);
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
expect(fetchModels).toHaveBeenCalled();
|
|
expect(result.CustomModel).toEqual(['customModel1', 'customModel2']);
|
|
});
|
|
|
|
it('correctly associates models to names using unique keys', async () => {
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
custom: [
|
|
{
|
|
baseURL: 'http://example.com',
|
|
apiKey: 'API_KEY1',
|
|
name: 'Model1',
|
|
models: { fetch: true },
|
|
},
|
|
{
|
|
baseURL: 'http://example.com',
|
|
apiKey: 'API_KEY2',
|
|
name: 'Model2',
|
|
models: { fetch: true },
|
|
},
|
|
],
|
|
},
|
|
});
|
|
fetchModels.mockImplementation(({ apiKey }) =>
|
|
Promise.resolve(apiKey === 'API_KEY1' ? ['model1Data'] : ['model2Data']),
|
|
);
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
expect(result.Model1).toEqual(['model1Data']);
|
|
expect(result.Model2).toEqual(['model2Data']);
|
|
});
|
|
|
|
it('correctly handles multiple endpoints with the same baseURL but different apiKeys', async () => {
|
|
// Mock the custom configuration to simulate the user's scenario
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
custom: [
|
|
{
|
|
name: 'LiteLLM',
|
|
apiKey: '${LITELLM_ALL_MODELS}',
|
|
baseURL: '${LITELLM_HOST}',
|
|
models: { fetch: true },
|
|
},
|
|
{
|
|
name: 'OpenAI',
|
|
apiKey: '${LITELLM_OPENAI_MODELS}',
|
|
baseURL: '${LITELLM_SECOND_HOST}',
|
|
models: { fetch: true },
|
|
},
|
|
{
|
|
name: 'Google',
|
|
apiKey: '${LITELLM_GOOGLE_MODELS}',
|
|
baseURL: '${LITELLM_SECOND_HOST}',
|
|
models: { fetch: true },
|
|
},
|
|
],
|
|
},
|
|
});
|
|
|
|
// Mock `fetchModels` to return different models based on the apiKey
|
|
fetchModels.mockImplementation(({ apiKey }) => {
|
|
switch (apiKey) {
|
|
case '${LITELLM_ALL_MODELS}':
|
|
return Promise.resolve(['AllModel1', 'AllModel2']);
|
|
case '${LITELLM_OPENAI_MODELS}':
|
|
return Promise.resolve(['OpenAIModel']);
|
|
case '${LITELLM_GOOGLE_MODELS}':
|
|
return Promise.resolve(['GoogleModel']);
|
|
default:
|
|
return Promise.resolve([]);
|
|
}
|
|
});
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
|
|
// Assert that the models are correctly fetched and mapped based on unique keys
|
|
expect(result.LiteLLM).toEqual(['AllModel1', 'AllModel2']);
|
|
expect(result.OpenAI).toEqual(['OpenAIModel']);
|
|
expect(result.Google).toEqual(['GoogleModel']);
|
|
|
|
// Ensure that fetchModels was called with correct parameters
|
|
expect(fetchModels).toHaveBeenCalledTimes(3);
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({ apiKey: '${LITELLM_ALL_MODELS}' }),
|
|
);
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({ apiKey: '${LITELLM_OPENAI_MODELS}' }),
|
|
);
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({ apiKey: '${LITELLM_GOOGLE_MODELS}' }),
|
|
);
|
|
});
|
|
|
|
it('loads models based on custom endpoint configuration respecting fetch rules', async () => {
|
|
process.env.MY_PRECIOUS_MISTRAL_KEY = 'actual_mistral_api_key';
|
|
process.env.MY_OPENROUTER_API_KEY = 'actual_openrouter_api_key';
|
|
// Setup custom configuration with specific API keys for Mistral and OpenRouter
|
|
// and "user_provided" for groq and Ollama, indicating no fetch for the latter two
|
|
getAppConfig.mockResolvedValue(exampleConfig);
|
|
|
|
// Assuming fetchModels would be called only for Mistral and OpenRouter
|
|
fetchModels.mockImplementation(({ name }) => {
|
|
switch (name) {
|
|
case 'Mistral':
|
|
return Promise.resolve([
|
|
'mistral-tiny',
|
|
'mistral-small',
|
|
'mistral-medium',
|
|
'mistral-large-latest',
|
|
]);
|
|
case 'OpenRouter':
|
|
return Promise.resolve(['gpt-3.5-turbo']);
|
|
default:
|
|
return Promise.resolve([]);
|
|
}
|
|
});
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
|
|
// Since fetch is true and apiKey is not "user_provided", fetching occurs for Mistral and OpenRouter
|
|
expect(result.Mistral).toEqual([
|
|
'mistral-tiny',
|
|
'mistral-small',
|
|
'mistral-medium',
|
|
'mistral-large-latest',
|
|
]);
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'Mistral',
|
|
apiKey: process.env.MY_PRECIOUS_MISTRAL_KEY,
|
|
}),
|
|
);
|
|
|
|
expect(result.OpenRouter).toEqual(['gpt-3.5-turbo']);
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'OpenRouter',
|
|
apiKey: process.env.MY_OPENROUTER_API_KEY,
|
|
}),
|
|
);
|
|
|
|
// For groq and ollama, since the apiKey is "user_provided", models should not be fetched
|
|
// Depending on your implementation's behavior regarding "default" models without fetching,
|
|
// you may need to adjust the following assertions:
|
|
expect(result.groq).toEqual(exampleConfig.endpoints.custom[2].models.default);
|
|
expect(result.ollama).toEqual(exampleConfig.endpoints.custom[3].models.default);
|
|
|
|
// Verifying fetchModels was not called for groq and ollama
|
|
expect(fetchModels).not.toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'groq',
|
|
}),
|
|
);
|
|
expect(fetchModels).not.toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'ollama',
|
|
}),
|
|
);
|
|
});
|
|
|
|
it('falls back to default models if fetching returns an empty array', async () => {
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
custom: [
|
|
{
|
|
name: 'EndpointWithSameFetchKey',
|
|
apiKey: 'API_KEY',
|
|
baseURL: 'http://example.com',
|
|
models: {
|
|
fetch: true,
|
|
default: ['defaultModel1'],
|
|
},
|
|
},
|
|
{
|
|
name: 'EmptyFetchModel',
|
|
apiKey: 'API_KEY',
|
|
baseURL: 'http://example.com',
|
|
models: {
|
|
fetch: true,
|
|
default: ['defaultModel1', 'defaultModel2'],
|
|
},
|
|
},
|
|
],
|
|
},
|
|
});
|
|
|
|
fetchModels.mockResolvedValue([]);
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
expect(fetchModels).toHaveBeenCalledTimes(1);
|
|
expect(result.EmptyFetchModel).toEqual(['defaultModel1', 'defaultModel2']);
|
|
});
|
|
|
|
it('falls back to default models if fetching returns a falsy value', async () => {
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
custom: [
|
|
{
|
|
name: 'FalsyFetchModel',
|
|
apiKey: 'API_KEY',
|
|
baseURL: 'http://example.com',
|
|
models: {
|
|
fetch: true,
|
|
default: ['defaultModel1', 'defaultModel2'],
|
|
},
|
|
},
|
|
],
|
|
},
|
|
});
|
|
|
|
fetchModels.mockResolvedValue(false);
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
|
|
expect(fetchModels).toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'FalsyFetchModel',
|
|
apiKey: 'API_KEY',
|
|
}),
|
|
);
|
|
|
|
expect(result.FalsyFetchModel).toEqual(['defaultModel1', 'defaultModel2']);
|
|
});
|
|
|
|
it('normalizes Ollama endpoint name to lowercase', async () => {
|
|
const testCases = [
|
|
{
|
|
name: 'Ollama',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'http://localhost:11434/v1/',
|
|
models: {
|
|
default: ['mistral', 'llama2'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
{
|
|
name: 'OLLAMA',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'http://localhost:11434/v1/',
|
|
models: {
|
|
default: ['mixtral', 'codellama'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
{
|
|
name: 'OLLaMA',
|
|
apiKey: 'user_provided',
|
|
baseURL: 'http://localhost:11434/v1/',
|
|
models: {
|
|
default: ['phi', 'neural-chat'],
|
|
fetch: false,
|
|
},
|
|
},
|
|
];
|
|
|
|
getAppConfig.mockResolvedValue({
|
|
endpoints: {
|
|
custom: testCases,
|
|
},
|
|
});
|
|
|
|
const result = await loadConfigModels(mockRequest);
|
|
|
|
// All variations of "Ollama" should be normalized to lowercase "ollama"
|
|
// and the last config in the array should override previous ones
|
|
expect(result.Ollama).toBeUndefined();
|
|
expect(result.OLLAMA).toBeUndefined();
|
|
expect(result.OLLaMA).toBeUndefined();
|
|
expect(result.ollama).toEqual(['phi', 'neural-chat']);
|
|
|
|
// Verify fetchModels was not called since these are user_provided
|
|
expect(fetchModels).not.toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'Ollama',
|
|
}),
|
|
);
|
|
expect(fetchModels).not.toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'OLLAMA',
|
|
}),
|
|
);
|
|
expect(fetchModels).not.toHaveBeenCalledWith(
|
|
expect.objectContaining({
|
|
name: 'OLLaMA',
|
|
}),
|
|
);
|
|
});
|
|
});
|