LibreChat/api/utils/tokens.js
Danny Avila ad1503abdc
🧪 feat: Claude Sonnet 4 - 1M Context Window (Beta Header) (#9093)
* adding beta header context-1m-2025-08-07 to claude sonnet 4 to increase contact window to 1M tokens

* adding context-1m beta header to test cases

* ci: Update Anthropic `getLLMConfig` tests and headers for model variations

- Refactored test cases to ensure proper handling of model variations for 'claude-sonnet-4'.
- Cleaned up unused mock implementations in tests for better clarity and performance.

* refactor: regex in header retrieval for 'claude-sonnet-4' models

* refactor: default tokens for 'claude-sonnet-4' to `1,000,000`

* refactor: add token value retrieval and pattern matching to model tests

---------

Co-authored-by: Dirk Petersen <no-reply@nowhere.com>
2025-08-16 13:36:46 -04:00

493 lines
13 KiB
JavaScript

const z = require('zod');
const { EModelEndpoint } = require('librechat-data-provider');
const openAIModels = {
'o4-mini': 200000,
'o3-mini': 195000, // -5000 from max
o3: 200000,
o1: 195000, // -5000 from max
'o1-mini': 127500, // -500 from max
'o1-preview': 127500, // -500 from max
'gpt-4': 8187, // -5 from max
'gpt-4-0613': 8187, // -5 from max
'gpt-4-32k': 32758, // -10 from max
'gpt-4-32k-0314': 32758, // -10 from max
'gpt-4-32k-0613': 32758, // -10 from max
'gpt-4-1106': 127500, // -500 from max
'gpt-4-0125': 127500, // -500 from max
'gpt-4.5': 127500, // -500 from max
'gpt-4.1': 1047576,
'gpt-4.1-mini': 1047576,
'gpt-4.1-nano': 1047576,
'gpt-5': 400000,
'gpt-5-mini': 400000,
'gpt-5-nano': 400000,
'gpt-4o': 127500, // -500 from max
'gpt-4o-mini': 127500, // -500 from max
'gpt-4o-2024-05-13': 127500, // -500 from max
'gpt-4o-2024-08-06': 127500, // -500 from max
'gpt-4-turbo': 127500, // -500 from max
'gpt-4-vision': 127500, // -500 from max
'gpt-3.5-turbo': 16375, // -10 from max
'gpt-3.5-turbo-0613': 4092, // -5 from max
'gpt-3.5-turbo-0301': 4092, // -5 from max
'gpt-3.5-turbo-16k': 16375, // -10 from max
'gpt-3.5-turbo-16k-0613': 16375, // -10 from max
'gpt-3.5-turbo-1106': 16375, // -10 from max
'gpt-3.5-turbo-0125': 16375, // -10 from max
};
const mistralModels = {
'mistral-': 31990, // -10 from max
'mistral-7b': 31990, // -10 from max
'mistral-small': 31990, // -10 from max
'mixtral-8x7b': 31990, // -10 from max
'mistral-large': 131000,
'mistral-large-2402': 127500,
'mistral-large-2407': 127500,
'pixtral-large': 131000,
'mistral-saba': 32000,
codestral: 256000,
'ministral-8b': 131000,
'ministral-3b': 131000,
};
const cohereModels = {
'command-light': 4086, // -10 from max
'command-light-nightly': 8182, // -10 from max
command: 4086, // -10 from max
'command-nightly': 8182, // -10 from max
'command-r': 127500, // -500 from max
'command-r-plus': 127500, // -500 from max
};
const googleModels = {
/* Max I/O is combined so we subtract the amount from max response tokens for actual total */
gemma: 8196,
'gemma-2': 32768,
'gemma-3': 32768,
'gemma-3-27b': 131072,
gemini: 30720, // -2048 from max
'gemini-pro-vision': 12288,
'gemini-exp': 2000000,
'gemini-2.5': 1000000, // 1M input tokens, 64k output tokens
'gemini-2.5-pro': 1000000,
'gemini-2.5-flash': 1000000,
'gemini-2.0': 2000000,
'gemini-2.0-flash': 1000000,
'gemini-2.0-flash-lite': 1000000,
'gemini-1.5': 1000000,
'gemini-1.5-flash': 1000000,
'gemini-1.5-flash-8b': 1000000,
'text-bison-32k': 32758, // -10 from max
'chat-bison-32k': 32758, // -10 from max
'code-bison-32k': 32758, // -10 from max
'codechat-bison-32k': 32758,
/* Codey, -5 from max: 6144 */
'code-': 6139,
'codechat-': 6139,
/* PaLM2, -5 from max: 8192 */
'text-': 8187,
'chat-': 8187,
};
const anthropicModels = {
'claude-': 100000,
'claude-instant': 100000,
'claude-2': 100000,
'claude-2.1': 200000,
'claude-3': 200000,
'claude-3-haiku': 200000,
'claude-3-sonnet': 200000,
'claude-3-opus': 200000,
'claude-3.5-haiku': 200000,
'claude-3-5-haiku': 200000,
'claude-3-5-sonnet': 200000,
'claude-3.5-sonnet': 200000,
'claude-3-7-sonnet': 200000,
'claude-3.7-sonnet': 200000,
'claude-3-5-sonnet-latest': 200000,
'claude-3.5-sonnet-latest': 200000,
'claude-sonnet-4': 1000000,
'claude-opus-4': 200000,
'claude-4': 200000,
};
const deepseekModels = {
'deepseek-reasoner': 63000, // -1000 from max (API)
deepseek: 63000, // -1000 from max (API)
'deepseek.r1': 127500,
};
const metaModels = {
// Basic patterns
llama3: 8000,
llama2: 4000,
'llama-3': 8000,
'llama-2': 4000,
// llama3.x pattern
'llama3.1': 127500,
'llama3.2': 127500,
'llama3.3': 127500,
// llama3-x pattern
'llama3-1': 127500,
'llama3-2': 127500,
'llama3-3': 127500,
// llama-3.x pattern
'llama-3.1': 127500,
'llama-3.2': 127500,
'llama-3.3': 127500,
// llama3.x:Nb pattern
'llama3.1:405b': 127500,
'llama3.1:70b': 127500,
'llama3.1:8b': 127500,
'llama3.2:1b': 127500,
'llama3.2:3b': 127500,
'llama3.2:11b': 127500,
'llama3.2:90b': 127500,
'llama3.3:70b': 127500,
// llama3-x-Nb pattern
'llama3-1-405b': 127500,
'llama3-1-70b': 127500,
'llama3-1-8b': 127500,
'llama3-2-1b': 127500,
'llama3-2-3b': 127500,
'llama3-2-11b': 127500,
'llama3-2-90b': 127500,
'llama3-3-70b': 127500,
// llama-3.x-Nb pattern
'llama-3.1-405b': 127500,
'llama-3.1-70b': 127500,
'llama-3.1-8b': 127500,
'llama-3.2-1b': 127500,
'llama-3.2-3b': 127500,
'llama-3.2-11b': 127500,
'llama-3.2-90b': 127500,
'llama-3.3-70b': 127500,
// Original llama2/3 patterns
'llama3-70b': 8000,
'llama3-8b': 8000,
'llama2-70b': 4000,
'llama2-13b': 4000,
'llama3:70b': 8000,
'llama3:8b': 8000,
'llama2:70b': 4000,
};
const ollamaModels = {
'qwen2.5': 32000,
};
const ai21Models = {
'ai21.j2-mid-v1': 8182, // -10 from max
'ai21.j2-ultra-v1': 8182, // -10 from max
'ai21.jamba-instruct-v1:0': 255500, // -500 from max
};
const amazonModels = {
'amazon.titan-text-lite-v1': 4000,
'amazon.titan-text-express-v1': 8000,
'amazon.titan-text-premier-v1:0': 31500, // -500 from max
// https://aws.amazon.com/ai/generative-ai/nova/
'amazon.nova-micro-v1:0': 127000, // -1000 from max,
'amazon.nova-lite-v1:0': 295000, // -5000 from max,
'amazon.nova-pro-v1:0': 295000, // -5000 from max,
'amazon.nova-premier-v1:0': 995000, // -5000 from max,
};
const bedrockModels = {
...anthropicModels,
...mistralModels,
...cohereModels,
...ollamaModels,
...deepseekModels,
...metaModels,
...ai21Models,
...amazonModels,
};
const xAIModels = {
grok: 131072,
'grok-beta': 131072,
'grok-vision-beta': 8192,
'grok-2': 131072,
'grok-2-latest': 131072,
'grok-2-1212': 131072,
'grok-2-vision': 32768,
'grok-2-vision-latest': 32768,
'grok-2-vision-1212': 32768,
'grok-3': 131072,
'grok-3-fast': 131072,
'grok-3-mini': 131072,
'grok-3-mini-fast': 131072,
'grok-4': 256000, // 256K context
};
const aggregateModels = {
...openAIModels,
...googleModels,
...bedrockModels,
...xAIModels,
// misc.
kimi: 131000,
// GPT-OSS
'gpt-oss-20b': 131000,
'gpt-oss-120b': 131000,
};
const maxTokensMap = {
[EModelEndpoint.azureOpenAI]: openAIModels,
[EModelEndpoint.openAI]: aggregateModels,
[EModelEndpoint.agents]: aggregateModels,
[EModelEndpoint.custom]: aggregateModels,
[EModelEndpoint.google]: googleModels,
[EModelEndpoint.anthropic]: anthropicModels,
[EModelEndpoint.bedrock]: bedrockModels,
};
const modelMaxOutputs = {
o1: 32268, // -500 from max: 32,768
'o1-mini': 65136, // -500 from max: 65,536
'o1-preview': 32268, // -500 from max: 32,768
'gpt-5': 128000,
'gpt-5-mini': 128000,
'gpt-5-nano': 128000,
'gpt-oss-20b': 131000,
'gpt-oss-120b': 131000,
system_default: 1024,
};
/** Outputs from https://docs.anthropic.com/en/docs/about-claude/models/all-models#model-names */
const anthropicMaxOutputs = {
'claude-3-haiku': 4096,
'claude-3-sonnet': 4096,
'claude-3-opus': 4096,
'claude-opus-4': 32000,
'claude-sonnet-4': 64000,
'claude-3.5-sonnet': 8192,
'claude-3-5-sonnet': 8192,
'claude-3.7-sonnet': 128000,
'claude-3-7-sonnet': 128000,
};
const maxOutputTokensMap = {
[EModelEndpoint.anthropic]: anthropicMaxOutputs,
[EModelEndpoint.azureOpenAI]: modelMaxOutputs,
[EModelEndpoint.openAI]: modelMaxOutputs,
[EModelEndpoint.custom]: modelMaxOutputs,
};
/**
* Finds the first matching pattern in the tokens map.
* @param {string} modelName
* @param {Record<string, number>} tokensMap
* @returns {string|null}
*/
function findMatchingPattern(modelName, tokensMap) {
const keys = Object.keys(tokensMap);
for (let i = keys.length - 1; i >= 0; i--) {
const modelKey = keys[i];
if (modelName.includes(modelKey)) {
return modelKey;
}
}
return null;
}
/**
* Retrieves a token value for a given model name from a tokens map.
*
* @param {string} modelName - The name of the model to look up.
* @param {EndpointTokenConfig | Record<string, number>} tokensMap - The map of model names to token values.
* @param {string} [key='context'] - The key to look up in the tokens map.
* @returns {number|undefined} The token value for the given model or undefined if no match is found.
*/
function getModelTokenValue(modelName, tokensMap, key = 'context') {
if (typeof modelName !== 'string' || !tokensMap) {
return undefined;
}
if (tokensMap[modelName]?.context) {
return tokensMap[modelName].context;
}
if (tokensMap[modelName]) {
return tokensMap[modelName];
}
const matchedPattern = findMatchingPattern(modelName, tokensMap);
if (matchedPattern) {
const result = tokensMap[matchedPattern];
return result?.[key] ?? result ?? tokensMap.system_default;
}
return tokensMap.system_default;
}
/**
* Retrieves the maximum tokens for a given model name.
*
* @param {string} modelName - The name of the model to look up.
* @param {string} endpoint - The endpoint (default is 'openAI').
* @param {EndpointTokenConfig} [endpointTokenConfig] - Token Config for current endpoint to use for max tokens lookup
* @returns {number|undefined} The maximum tokens for the given model or undefined if no match is found.
*/
function getModelMaxTokens(modelName, endpoint = EModelEndpoint.openAI, endpointTokenConfig) {
const tokensMap = endpointTokenConfig ?? maxTokensMap[endpoint];
return getModelTokenValue(modelName, tokensMap);
}
/**
* Retrieves the maximum output tokens for a given model name.
*
* @param {string} modelName - The name of the model to look up.
* @param {string} endpoint - The endpoint (default is 'openAI').
* @param {EndpointTokenConfig} [endpointTokenConfig] - Token Config for current endpoint to use for max tokens lookup
* @returns {number|undefined} The maximum output tokens for the given model or undefined if no match is found.
*/
function getModelMaxOutputTokens(modelName, endpoint = EModelEndpoint.openAI, endpointTokenConfig) {
const tokensMap = endpointTokenConfig ?? maxOutputTokensMap[endpoint];
return getModelTokenValue(modelName, tokensMap, 'output');
}
/**
* Retrieves the model name key for a given model name input. If the exact model name isn't found,
* it searches for partial matches within the model name, checking keys in reverse order.
*
* @param {string} modelName - The name of the model to look up.
* @param {string} endpoint - The endpoint (default is 'openAI').
* @returns {string|undefined} The model name key for the given model; returns input if no match is found and is string.
*
* @example
* matchModelName('gpt-4-32k-0613'); // Returns 'gpt-4-32k-0613'
* matchModelName('gpt-4-32k-unknown'); // Returns 'gpt-4-32k'
* matchModelName('unknown-model'); // Returns undefined
*/
function matchModelName(modelName, endpoint = EModelEndpoint.openAI) {
if (typeof modelName !== 'string') {
return undefined;
}
const tokensMap = maxTokensMap[endpoint];
if (!tokensMap) {
return modelName;
}
if (tokensMap[modelName]) {
return modelName;
}
const matchedPattern = findMatchingPattern(modelName, tokensMap);
return matchedPattern || modelName;
}
const modelSchema = z.object({
id: z.string(),
pricing: z.object({
prompt: z.string(),
completion: z.string(),
}),
context_length: z.number(),
});
const inputSchema = z.object({
data: z.array(modelSchema),
});
/**
* Processes a list of model data from an API and organizes it into structured data based on URL and specifics of rates and context.
* @param {{ data: Array<z.infer<typeof modelSchema>> }} input The input object containing base URL and data fetched from the API.
* @returns {EndpointTokenConfig} The processed model data.
*/
function processModelData(input) {
const validationResult = inputSchema.safeParse(input);
if (!validationResult.success) {
throw new Error('Invalid input data');
}
const { data } = validationResult.data;
/** @type {EndpointTokenConfig} */
const tokenConfig = {};
for (const model of data) {
const modelKey = model.id;
if (modelKey === 'openrouter/auto') {
model.pricing = {
prompt: '0.00001',
completion: '0.00003',
};
}
const prompt = parseFloat(model.pricing.prompt) * 1000000;
const completion = parseFloat(model.pricing.completion) * 1000000;
tokenConfig[modelKey] = {
prompt,
completion,
context: model.context_length,
};
}
return tokenConfig;
}
const tiktokenModels = new Set([
'text-davinci-003',
'text-davinci-002',
'text-davinci-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
'davinci',
'curie',
'babbage',
'ada',
'code-davinci-002',
'code-davinci-001',
'code-cushman-002',
'code-cushman-001',
'davinci-codex',
'cushman-codex',
'text-davinci-edit-001',
'code-davinci-edit-001',
'text-embedding-ada-002',
'text-similarity-davinci-001',
'text-similarity-curie-001',
'text-similarity-babbage-001',
'text-similarity-ada-001',
'text-search-davinci-doc-001',
'text-search-curie-doc-001',
'text-search-babbage-doc-001',
'text-search-ada-doc-001',
'code-search-babbage-code-001',
'code-search-ada-code-001',
'gpt2',
'gpt-4',
'gpt-4-0314',
'gpt-4-32k',
'gpt-4-32k-0314',
'gpt-3.5-turbo',
'gpt-3.5-turbo-0301',
]);
module.exports = {
inputSchema,
modelSchema,
maxTokensMap,
tiktokenModels,
maxOutputTokensMap,
matchModelName,
processModelData,
getModelMaxTokens,
getModelTokenValue,
findMatchingPattern,
getModelMaxOutputTokens,
};