--- title: 🚅 LiteLLM and Ollama description: Using LibreChat with LiteLLM Proxy weight: -7 --- # Using LibreChat with LiteLLM Proxy Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for: * Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format * Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests * Authentication & Spend Tracking Virtual Keys ## Start LiteLLM Proxy Server ### Pip install litellm ```shell pip install litellm ``` ### Create a config.yaml for litellm proxy More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)** ```yaml model_list: - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-small-eu api_base: https://my-endpoint-europe-berri-992.openai.azure.com/ api_key: rpm: 6 # Rate limit for this deployment: in requests per minute (rpm) - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-small-ca api_base: https://my-endpoint-canada-berri992.openai.azure.com/ api_key: rpm: 6 - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-large api_base: https://openai-france-1234.openai.azure.com/ api_key: rpm: 1440 ``` ### Start the proxy ```shell litellm --config /path/to/config.yaml #INFO: Proxy running on http://0.0.0.0:8000 ``` ## Use LiteLLM Proxy Server with LibreChat #### 1. Clone the repo ```shell git clone https://github.com/danny-avila/LibreChat.git ``` #### 2. Modify Librechat's `docker-compose.yml` ```yaml OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions ``` **Important**: As of v0.6.6, it's recommend you use the `librechat.yaml` [Configuration file (guide here)](./custom_config.md) to add Reverse Proxies as separate endpoints. #### 3. Save fake OpenAI key in Librechat's `.env` Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key). ```env OPENAI_API_KEY=sk-1234 ``` #### 4. Run LibreChat: ```shell docker compose up ``` --- ### Why use LiteLLM? 1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format. 2. **Load Balancing**: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments. 3. **Authentication & Spend Tracking**: The server supports virtual keys for authentication and tracks spending. Key components and features include: - **Installation**: Easy installation. - **Testing**: Testing features to route requests to specific models. - **Server Endpoints**: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation. - **Supported LLMs**: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more. - **Proxy Configurations**: Allows setting various parameters like model list, server settings, environment variables, and more. - **Multiple Models Management**: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts. - **Embedding Models Support**: Special configurations for embedding models. - **Authentication Management**: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend. - **Custom Configurations**: Supports setting model-specific parameters, caching responses, and custom prompt templates. - **Debugging Tools**: Options for debugging and logging proxy input/output. - **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics. - **Proxy CLI Arguments**: A wide range of command-line arguments for customization. Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications. ## Ollama Use [Ollama](https://ollama.ai/) for * Run large language models on local hardware * Host multiple models * Dynamically load the model upon request ### docker-compose.yaml with GPU ```yaml version: "3.8" services: litellm: image: ghcr.io/berriai/litellm:main-v1.18.8 volumes: - ./litellm/litellm-config.yaml:/app/config.yaml command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ] ollama: image: ollama/ollama deploy: resources: reservations: devices: - driver: nvidia capabilities: [compute, utility] ports: - "11434:11434" volumes: - ./ollama:/root/.ollama ``` ### Loading Models in Ollama 1. Browse the available models at [Ollama Library](https://ollama.ai/library) 2. Run ```docker exec -it ollama /bin/bash``` 3. Copy the text from the Tags tab from the library website. It should begin with 'ollama run' 4. Check model size. Models that can run in GPU memory perform the best. 5. Use /bye to exit the terminal ### Litellm Ollama Configuration Add the below lines to the config to access the Ollama models ```yaml - model_name: mixtral litellm_params: model: ollama/mixtral:8x7b-instruct-v0.1-q5_K_M api_base: http://ollama:11434 stream: True - model_name: mistral litellm_params: model: ollama/mistral api_base: http://ollama:11434 stream: True ``` ## Caching with Redis Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching. ### Update docker-compose.yaml to enable Redis Add the below service to your docker-compose.yaml ```yaml redis: image: redis:7-alpine command: - sh - -c # this is to evaluate the $REDIS_PASSWORD from the env - redis-server --appendonly yes --requirepass $$REDIS_PASSWORD ## $$ because of docker-compose environment: REDIS_PASSWORD: RedisChangeMe volumes: - ./redis:/data ``` Add the following to the environment variables in the litellm service inside the docker-compose.yaml ```yaml litellm: image: ghcr.io/berriai/litellm:main-latest volumes: - ./litellm/litellm-config.yaml:/app/config.yaml command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ] environment: REDIS_HOST: redis REDIS_PORT: 6379 REDIS_PASSWORD: RedisChangeMe ``` ### Update Litellm Config File Add the below options to the litellm config file ```yaml litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py cache: True # set cache responses to True, litellm defaults to using a redis cache cache_params: # cache_params are optional type: "redis" # The type of cache to initialize. Can be "local" or "redis". Defaults to "local". # Optional configurations supported_call_types: ["acompletion", "completion", "embedding", "aembedding"] # defaults to all litellm call types ``` ## Performance Monitoring with Langfuse Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache. ### Update docker-compose.yaml to enable Langfuse Langfuse requires a postgres database, so add both postgres and langfuse services to the docker-compose.yaml ```yaml langfuse-server: image: ghcr.io/langfuse/langfuse:latest depends_on: - db ports: - "3000:3000" environment: - NODE_ENV=production - DATABASE_URL=postgresql://postgres:PostgresChangeMe@db:5432/postgres - NEXTAUTH_SECRET=ChangeMe - SALT=ChangeMe - NEXTAUTH_URL=http://localhost:3000 - TELEMETRY_ENABLED=${TELEMETRY_ENABLED:-true} - NEXT_PUBLIC_SIGN_UP_DISABLED=${NEXT_PUBLIC_SIGN_UP_DISABLED:-false} - LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES=${LANGFUSE_ENABLE_EXPERIMENTAL_FEATURES:-false} db: image: postgres restart: always environment: - POSTGRES_USER=postgres - POSTGRES_PASSWORD=PostgresChangeMe - POSTGRES_DB=postgres volumes: - ./postgres:/var/lib/postgresql/data ``` Once Langfuse is running, create an account by accessing the web interface on port 3000. Create a new project to obtain the needed public and private key used by the litellm config Add environement variable within the litellm service within docker-compose.yaml ```yaml litellm: image: ghcr.io/berriai/litellm:main-latest ports: - "8000:8000" volumes: - /srv/litellm/config/litellm-config.yaml:/app/config.yaml command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ] environment: LANGFUSE_PUBLIC_KEY: pk-lf-RandomStringFromLangfuseWebInterface LANGFUSE_SECRET_KEY: sk-lf-RandomStringFromLangfuseWebInterface LANGFUSE_HOST: http://langfuse-server:3000 ``` ### Update litellm config file ```yaml litellm_settings: success_callback: ["langfuse"] ```