const { v4: uuidv4 } = require('uuid'); const { EModelEndpoint, Constants, openAISettings, CacheKeys } = require('librechat-data-provider'); const { createImportBatchBuilder } = require('./importBatchBuilder'); const getLogStores = require('~/cache/getLogStores'); const logger = require('~/config/winston'); /** * Returns the appropriate importer function based on the provided JSON data. * * @param {Object} jsonData - The JSON data to import. * @returns {Function} - The importer function. * @throws {Error} - If the import type is not supported. */ function getImporter(jsonData) { // For ChatGPT if (Array.isArray(jsonData)) { logger.info('Importing ChatGPT conversation'); return importChatGptConvo; } // For ChatbotUI if (jsonData.version && Array.isArray(jsonData.history)) { logger.info('Importing ChatbotUI conversation'); return importChatBotUiConvo; } // For LibreChat if (jsonData.conversationId && (jsonData.messagesTree || jsonData.messages)) { logger.info('Importing LibreChat conversation'); return importLibreChatConvo; } throw new Error('Unsupported import type'); } /** * Imports a chatbot-ui V1 conversation from a JSON file and saves it to the database. * * @param {Object} jsonData - The JSON data containing the chatbot conversation. * @param {string} requestUserId - The ID of the user making the import request. * @param {Function} [builderFactory=createImportBatchBuilder] - The factory function to create an import batch builder. * @returns {Promise} - A promise that resolves when the import is complete. * @throws {Error} - If there is an error creating the conversation from the JSON file. */ async function importChatBotUiConvo( jsonData, requestUserId, builderFactory = createImportBatchBuilder, ) { // this have been tested with chatbot-ui V1 export https://github.com/mckaywrigley/chatbot-ui/tree/b865b0555f53957e96727bc0bbb369c9eaecd83b#legacy-code try { /** @type {ImportBatchBuilder} */ const importBatchBuilder = builderFactory(requestUserId); for (const historyItem of jsonData.history) { importBatchBuilder.startConversation(EModelEndpoint.openAI); for (const message of historyItem.messages) { if (message.role === 'assistant') { importBatchBuilder.addGptMessage(message.content, historyItem.model.id); } else if (message.role === 'user') { importBatchBuilder.addUserMessage(message.content); } } importBatchBuilder.finishConversation(historyItem.name, new Date()); } await importBatchBuilder.saveBatch(); logger.info(`user: ${requestUserId} | ChatbotUI conversation imported`); } catch (error) { logger.error(`user: ${requestUserId} | Error creating conversation from ChatbotUI file`, error); } } /** * Imports a LibreChat conversation from JSON. * * @param {Object} jsonData - The JSON data representing the conversation. * @param {string} requestUserId - The ID of the user making the import request. * @param {Function} [builderFactory=createImportBatchBuilder] - The factory function to create an import batch builder. * @returns {Promise} - A promise that resolves when the import is complete. */ async function importLibreChatConvo( jsonData, requestUserId, builderFactory = createImportBatchBuilder, ) { try { /** @type {ImportBatchBuilder} */ const importBatchBuilder = builderFactory(requestUserId); const options = jsonData.options || {}; /* Endpoint configuration */ let endpoint = jsonData.endpoint ?? options.endpoint ?? EModelEndpoint.openAI; const cache = getLogStores(CacheKeys.CONFIG_STORE); const endpointsConfig = await cache.get(CacheKeys.ENDPOINT_CONFIG); const endpointConfig = endpointsConfig?.[endpoint]; if (!endpointConfig && endpointsConfig) { endpoint = Object.keys(endpointsConfig)[0]; } else if (!endpointConfig) { endpoint = EModelEndpoint.openAI; } importBatchBuilder.startConversation(endpoint); let firstMessageDate = null; const messagesToImport = jsonData.messagesTree || jsonData.messages; if (jsonData.recursive) { /** * Recursively traverse the messages tree and save each message to the database. * @param {TMessage[]} messages * @param {string} parentMessageId */ const traverseMessages = async (messages, parentMessageId = null) => { for (const message of messages) { if (!message.text && !message.content) { continue; } let savedMessage; if (message.sender?.toLowerCase() === 'user' || message.isCreatedByUser) { savedMessage = await importBatchBuilder.saveMessage({ text: message.text, content: message.content, sender: 'user', isCreatedByUser: true, parentMessageId: parentMessageId, }); } else { savedMessage = await importBatchBuilder.saveMessage({ text: message.text, content: message.content, sender: message.sender, isCreatedByUser: false, model: options.model, parentMessageId: parentMessageId, }); } if (!firstMessageDate && message.createdAt) { firstMessageDate = new Date(message.createdAt); } if (message.children && message.children.length > 0) { await traverseMessages(message.children, savedMessage.messageId); } } }; await traverseMessages(messagesToImport); } else if (messagesToImport) { const idMapping = new Map(); for (const message of messagesToImport) { if (!firstMessageDate && message.createdAt) { firstMessageDate = new Date(message.createdAt); } const newMessageId = uuidv4(); idMapping.set(message.messageId, newMessageId); const clonedMessage = { ...message, messageId: newMessageId, parentMessageId: message.parentMessageId && message.parentMessageId !== Constants.NO_PARENT ? idMapping.get(message.parentMessageId) || Constants.NO_PARENT : Constants.NO_PARENT, }; importBatchBuilder.saveMessage(clonedMessage); } } else { throw new Error('Invalid LibreChat file format'); } if (firstMessageDate === 'Invalid Date') { firstMessageDate = null; } importBatchBuilder.finishConversation(jsonData.title, firstMessageDate ?? new Date(), options); await importBatchBuilder.saveBatch(); logger.debug(`user: ${requestUserId} | Conversation "${jsonData.title}" imported`); } catch (error) { logger.error(`user: ${requestUserId} | Error creating conversation from LibreChat file`, error); } } /** * Imports ChatGPT conversations from provided JSON data. * Initializes the import process by creating a batch builder and processing each conversation in the data. * * @param {ChatGPTConvo[]} jsonData - Array of conversation objects to be imported. * @param {string} requestUserId - The ID of the user who initiated the import process. * @param {Function} builderFactory - Factory function to create a new import batch builder instance, defaults to createImportBatchBuilder. * @returns {Promise} Promise that resolves when all conversations have been imported. */ async function importChatGptConvo( jsonData, requestUserId, builderFactory = createImportBatchBuilder, ) { try { const importBatchBuilder = builderFactory(requestUserId); for (const conv of jsonData) { processConversation(conv, importBatchBuilder, requestUserId); } await importBatchBuilder.saveBatch(); } catch (error) { logger.error(`user: ${requestUserId} | Error creating conversation from imported file`, error); } } /** * Processes a single conversation, adding messages to the batch builder based on author roles and handling text content. * It directly manages the addition of messages for different roles and handles citations for assistant messages. * * @param {ChatGPTConvo} conv - A single conversation object that contains multiple messages and other details. * @param {ImportBatchBuilder} importBatchBuilder - The batch builder instance used to manage and batch conversation data. * @param {string} requestUserId - The ID of the user who initiated the import process. * @returns {void} */ function processConversation(conv, importBatchBuilder, requestUserId) { importBatchBuilder.startConversation(EModelEndpoint.openAI); // Map all message IDs to new UUIDs const messageMap = new Map(); for (const [id, mapping] of Object.entries(conv.mapping)) { if (mapping.message && mapping.message.content.content_type) { const newMessageId = uuidv4(); messageMap.set(id, newMessageId); } } // Create and save messages using the mapped IDs const messages = []; for (const [id, mapping] of Object.entries(conv.mapping)) { const role = mapping.message?.author?.role; if (!mapping.message) { messageMap.delete(id); continue; } else if (role === 'system') { messageMap.delete(id); continue; } const newMessageId = messageMap.get(id); const parentMessageId = mapping.parent && messageMap.has(mapping.parent) ? messageMap.get(mapping.parent) : Constants.NO_PARENT; const messageText = formatMessageText(mapping.message); const isCreatedByUser = role === 'user'; let sender = isCreatedByUser ? 'user' : 'GPT-3.5'; const model = mapping.message.metadata.model_slug || openAISettings.model.default; if (model.includes('gpt-4')) { sender = 'GPT-4'; } messages.push({ messageId: newMessageId, parentMessageId, text: messageText, sender, isCreatedByUser, model, user: requestUserId, endpoint: EModelEndpoint.openAI, }); } for (const message of messages) { importBatchBuilder.saveMessage(message); } importBatchBuilder.finishConversation(conv.title, new Date(conv.create_time * 1000)); } /** * Processes text content of messages authored by an assistant, inserting citation links as required. * Uses citation start and end indices to place links at the correct positions. * * @param {ChatGPTMessage} messageData - The message data containing metadata about citations. * @param {string} messageText - The original text of the message which may be altered by inserting citation links. * @returns {string} - The updated message text after processing for citations. */ function processAssistantMessage(messageData, messageText) { if (!messageText) { return messageText; } const citations = messageData.metadata?.citations ?? []; const sortedCitations = [...citations].sort((a, b) => b.start_ix - a.start_ix); let result = messageText; for (const citation of sortedCitations) { if ( !citation.metadata?.type || citation.metadata.type !== 'webpage' || typeof citation.start_ix !== 'number' || typeof citation.end_ix !== 'number' || citation.start_ix >= citation.end_ix ) { continue; } const replacement = ` ([${citation.metadata.title}](${citation.metadata.url}))`; result = result.slice(0, citation.start_ix) + replacement + result.slice(citation.end_ix); } return result; } /** * Formats the text content of a message based on its content type and author role. * @param {ChatGPTMessage} messageData - The message data. * @returns {string} - The updated message text after processing. */ function formatMessageText(messageData) { const isText = messageData.content.content_type === 'text'; let messageText = ''; if (isText && messageData.content.parts) { messageText = messageData.content.parts.join(' '); } else if (messageData.content.content_type === 'code') { messageText = `\`\`\`${messageData.content.language}\n${messageData.content.text}\n\`\`\``; } else if (messageData.content.content_type === 'execution_output') { messageText = `Execution Output:\n> ${messageData.content.text}`; } else if (messageData.content.parts) { for (const part of messageData.content.parts) { if (typeof part === 'string') { messageText += part + ' '; } else if (typeof part === 'object') { messageText = `\`\`\`json\n${JSON.stringify(part, null, 2)}\n\`\`\`\n`; } } messageText = messageText.trim(); } else { messageText = `\`\`\`json\n${JSON.stringify(messageData.content, null, 2)}\n\`\`\``; } if (isText && messageData.author.role !== 'user') { messageText = processAssistantMessage(messageData, messageText); } return messageText; } module.exports = { getImporter, processAssistantMessage };