# Using LibreChat with LiteLLM Proxy Use LiteLLM Proxy for: * Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI ChatCompletions & Completions format * Load balancing - between Multiple Models + Deployments of the same model LiteLLM proxy can handle 1k+ requests/second during load tests * Authentication & Spend Tracking Virtual Keys ## Start LiteLLM Proxy Server ### Pip install litellm ```shell pip install litellm ``` ### Create a config.yaml for litellm proxy More information on LiteLLM configurations here: https://docs.litellm.ai/docs/simple_proxy#proxy-configs ```yaml model_list: - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-small-eu api_base: https://my-endpoint-europe-berri-992.openai.azure.com/ api_key: rpm: 6 # Rate limit for this deployment: in requests per minute (rpm) - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-small-ca api_base: https://my-endpoint-canada-berri992.openai.azure.com/ api_key: rpm: 6 - model_name: gpt-3.5-turbo litellm_params: model: azure/gpt-turbo-large api_base: https://openai-france-1234.openai.azure.com/ api_key: rpm: 1440 ``` ### Start the proxy ```shell litellm --config /path/to/config.yaml #INFO: Proxy running on http://0.0.0.0:8000 ``` ## Use LiteLLM Proxy Server with LibreChat #### 1. Clone the repo ```shell git clone https://github.com/danny-avila/LibreChat.git ``` #### 2. Modify Librechat's `docker-compose.yml` ```yaml OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions ``` #### 3. Save fake OpenAI key in Librechat's `.env` Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key). ```env OPENAI_API_KEY=sk-1234 ``` #### 4. Run LibreChat: ```shell docker compose up ``` --- ### Why use LiteLLM? 1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format. 2. **Load Balancing**: Capable of handling over 1,000 requests per second during load tests, it balances load across various models and deployments. 3. **Authentication & Spend Tracking**: The server supports virtual keys for authentication and tracks spending. Key components and features include: - **Installation**: Easy installation. - **Testing**: Testing features to route requests to specific models. - **Server Endpoints**: Offers multiple endpoints for chat completions, completions, embeddings, model lists, and key generation. - **Supported LLMs**: Supports a wide range of LLMs, including AWS Bedrock, Azure OpenAI, Huggingface, AWS Sagemaker, Anthropic, and more. - **Proxy Configurations**: Allows setting various parameters like model list, server settings, environment variables, and more. - **Multiple Models Management**: Configurations can be set up for managing multiple models with fallbacks, cooldowns, retries, and timeouts. - **Embedding Models Support**: Special configurations for embedding models. - **Authentication Management**: Features for managing authentication through virtual keys, model upgrades/downgrades, and tracking spend. - **Custom Configurations**: Supports setting model-specific parameters, caching responses, and custom prompt templates. - **Debugging Tools**: Options for debugging and logging proxy input/output. - **Deployment and Performance**: Information on deploying LiteLLM Proxy and its performance metrics. - **Proxy CLI Arguments**: A wide range of command-line arguments for customization. Overall, LiteLLM Server offers a comprehensive suite of tools for managing, deploying, and interacting with a variety of LLMs, making it a versatile choice for large-scale AI applications.