Commit graph

11 commits

Author SHA1 Message Date
Danny Avila
9d854dac07
🤖 feat: Gemini 1.5 Support (+Vertex AI) (#2383)
* WIP: gemini-1.5 support

* feat: extended vertex ai support

* fix: handle possibly undefined modelName

* fix: gpt-4-turbo-preview invalid vision model

* feat: specify `fileConfig.imageOutputType` and make PNG default image conversion type

* feat: better truncation for errors including base64 strings

* fix: gemini inlineData formatting

* feat: RAG augmented prompt for gemini-1.5

* feat: gemini-1.5 rates and token window

* chore: adjust tokens, update docs, update vision Models

* chore: add back `ChatGoogleVertexAI` for chat models via vertex ai

* refactor: ask/edit controllers to not use `unfinished` field for google endpoint

* chore: remove comment

* chore(ci): fix AppService test

* chore: remove comment

* refactor(GoogleSearch): use `GOOGLE_SEARCH_API_KEY` instead, issue warning for old variable

* chore: bump data-provider to 0.5.4

* chore: update docs

* fix: condition for gemini-1.5 using generative ai lib

* chore: update docs

* ci: add additional AppService test for `imageOutputType`

* refactor: optimize new config value `imageOutputType`

* chore: bump CONFIG_VERSION

* fix(assistants): avatar upload
2024-04-16 08:32:40 -04:00
Danny Avila
7934cc5ec4
🪙 fix(getModelMaxTokens): Retrieve Correct Context Tokens for Azure OpenAI (#1710) 2024-02-02 23:53:50 -05:00
Danny Avila
8479ac7293
🚀 feat: Support for GPT-3.5 Turbo/0125 Model (#1704)
* 🚀 feat: Support for GPT-3.5 Turbo/0125 Model

* ci: fix tx test
2024-02-02 01:01:11 -05:00
Danny Avila
fcbaa74e4a
🚀 feat: Support for GPT-4 Turbo/0125 Models (#1643) 2024-01-25 22:57:18 -05:00
Danny Avila
561ce8e86a
feat: Google Gemini ❇️ (#1355)
* refactor: add gemini-pro to google Models list; use defaultModels for central model listing

* refactor(SetKeyDialog): create useMultipleKeys hook to use for Azure, export `isJson` from utils, use EModelEndpoint

* refactor(useUserKey): change variable names to make keyName setting more clear

* refactor(FileUpload): allow passing container className string

* feat(GoogleClient): Gemini support

* refactor(GoogleClient): alternate stream speed for Gemini models

* feat(Gemini): styling/settings configuration for Gemini

* refactor(GoogleClient): substract max response tokens from max context tokens if context is above 32k (I/O max is combined between the two)

* refactor(tokens): correct google max token counts and subtract max response tokens when input/output count are combined towards max context count

* feat(google/initializeClient): handle both local and user_provided credentials and write tests

* fix(GoogleClient): catch if credentials are undefined, handle if serviceKey is string or object correctly, handle no examples passed, throw error if not a Generative Language model and no service account JSON key is provided, throw error if it is a Generative m
odel, but not google API key was provided

* refactor(loadAsyncEndpoints/google): activate Google endpoint if either the service key JSON file is provided in /api/data, or a GOOGLE_KEY is defined.

* docs: updated Google configuration

* fix(ci): Mock import of Service Account Key JSON file (auth.json)

* Update apis_and_tokens.md

* feat: increase max output tokens slider for gemini pro

* refactor(GoogleSettings): handle max and default maxOutputTokens on model change

* chore: add sensitive redact regex

* docs: add warning about data privacy

* Update apis_and_tokens.md
2023-12-15 02:18:07 -05:00
Danny Avila
df1dfa7d46
refactor: Use librechat-data-provider app-wide 🔄 (#1326)
* chore: bump vite, vitejs/plugin-react, mark client package as esm, move react-query as a peer dep in data-provider

* chore: import changes due to new data-provider export strategy, also fix type imports where applicable

* chore: export react-query services as separate to avoid react dependencies in /api/

* chore: suppress sourcemap warnings and polyfill node:path which is used by filenamify
TODO: replace filenamify with an alternative and REMOVE polyfill

* chore: /api/ changes to support `librechat-data-provider`

* refactor: rewrite Dockerfile.multi in light of /api/ changes to support `librechat-data-provider`

* chore: remove volume mapping to node_modules directories in default compose file

* chore: remove schemas from /api/ as is no longer needed with use of `librechat-data-provider`

* fix(ci): jest `librechat-data-provider/react-query` module resolution
2023-12-11 14:48:40 -05:00
Danny Avila
583e978a82
feat(Google): Support all Text/Chat Models, Response streaming, PaLM -> Google 🤖 (#1316)
* feat: update PaLM icons

* feat: add additional google models

* POC: formatting inputs for Vertex AI streaming

* refactor: move endpoints services outside of /routes dir to /services/Endpoints

* refactor: shorten schemas import

* refactor: rename PALM to GOOGLE

* feat: make Google editable endpoint

* feat: reusable Ask and Edit controllers based off Anthropic

* chore: organize imports/logic

* fix(parseConvo): include examples in googleSchema

* fix: google only allows odd number of messages to be sent

* fix: pass proxy to AnthropicClient

* refactor: change `google` altName to `Google`

* refactor: update getModelMaxTokens and related functions to handle maxTokensMap with nested endpoint model key/values

* refactor: google Icon and response sender changes (Codey and Google logo instead of PaLM in all cases)

* feat: google support for maxTokensMap

* feat: google updated endpoints with Ask/Edit controllers, buildOptions, and initializeClient

* feat(GoogleClient): now builds prompt for text models and supports real streaming from Vertex AI through langchain

* chore(GoogleClient): remove comments, left before for reference in git history

* docs: update google instructions (WIP)

* docs(apis_and_tokens.md): add images to google instructions

* docs: remove typo apis_and_tokens.md

* Update apis_and_tokens.md

* feat(Google): use default settings map, fully support context for both text and chat models, fully support examples for chat models

* chore: update more PaLM references to Google

* chore: move playwright out of workflows to avoid failing tests
2023-12-10 14:54:13 -05:00
Danny Avila
d7ef4590ea
🔧 Fix: Resolve Anthropic Client Issues 🧠 (#1226)
* fix: correct preset title for Anthropic endpoint

* fix(Settings/Anthropic): show correct default value for LLM temperature

* fix(AnthropicClient): use `getModelMaxTokens` to get the correct LLM max context tokens, correctly set default temperature to 1, use only 2 params for class constructor, use `getResponseSender` to add correct sender to response message

* refactor(/api/ask|edit/anthropic): save messages to database after the final response is sent to the client, and do not save conversation from route controller

* fix(initializeClient/anthropic): correctly pass client options (endpointOption) to class initialization

* feat(ModelService/Anthropic): add claude-1.2
2023-11-26 14:44:57 -05:00
Danny Avila
48c087cc06
chore: add token rate support for 11/06 models (#1146)
* chore: update model rates with 11/06 rates

* chore: add new models to env.example for OPENAI_MODELS

* chore: reference actual maxTokensMap in ci tests
2023-11-06 15:26:16 -05:00
Danny Avila
365c39c405
feat: Accurate Token Usage Tracking & Optional Balance (#1018)
* refactor(Chains/llms): allow passing callbacks

* refactor(BaseClient): accurately count completion tokens as generation only

* refactor(OpenAIClient): remove unused getTokenCountForResponse, pass streaming var and callbacks in initializeLLM

* wip: summary prompt tokens

* refactor(summarizeMessages): new cut-off strategy that generates a better summary by adding context from beginning, truncating the middle, and providing the end
wip: draft out relevant providers and variables for token tracing

* refactor(createLLM): make streaming prop false by default

* chore: remove use of getTokenCountForResponse

* refactor(agents): use BufferMemory as ConversationSummaryBufferMemory token usage not easy to trace

* chore: remove passing of streaming prop, also console log useful vars for tracing

* feat: formatFromLangChain helper function to count tokens for ChatModelStart

* refactor(initializeLLM): add role for LLM tracing

* chore(formatFromLangChain): update JSDoc

* feat(formatMessages): formats langChain messages into OpenAI payload format

* chore: install openai-chat-tokens

* refactor(formatMessage): optimize conditional langChain logic
fix(formatFromLangChain): fix destructuring

* feat: accurate prompt tokens for ChatModelStart before generation

* refactor(handleChatModelStart): move to callbacks dir, use factory function

* refactor(initializeLLM): rename 'role' to 'context'

* feat(Balance/Transaction): new schema/models for tracking token spend
refactor(Key): factor out model export to separate file

* refactor(initializeClient): add req,res objects to client options

* feat: add-balance script to add to an existing users' token balance
refactor(Transaction): use multiplier map/function, return balance update

* refactor(Tx): update enum for tokenType, return 1 for multiplier if no map match

* refactor(Tx): add fair fallback value multiplier incase the config result is undefined

* refactor(Balance): rename 'tokens' to 'tokenCredits'

* feat: balance check, add tx.js for new tx-related methods and tests

* chore(summaryPrompts): update prompt token count

* refactor(callbacks): pass req, res
wip: check balance

* refactor(Tx): make convoId a String type, fix(calculateTokenValue)

* refactor(BaseClient): add conversationId as client prop when assigned

* feat(RunManager): track LLM runs with manager, track token spend from LLM,
refactor(OpenAIClient): use RunManager to create callbacks, pass user prop to langchain api calls

* feat(spendTokens): helper to spend prompt/completion tokens

* feat(checkBalance): add helper to check, log, deny request if balance doesn't have enough funds
refactor(Balance): static check method to return object instead of boolean now
wip(OpenAIClient): implement use of checkBalance

* refactor(initializeLLM): add token buffer to assure summary isn't generated when subsequent payload is too large
refactor(OpenAIClient): add checkBalance
refactor(createStartHandler): add checkBalance

* chore: remove prompt and completion token logging from route handler

* chore(spendTokens): add JSDoc

* feat(logTokenCost): record transactions for basic api calls

* chore(ask/edit): invoke getResponseSender only once per API call

* refactor(ask/edit): pass promptTokens to getIds and include in abort data

* refactor(getIds -> getReqData): rename function

* refactor(Tx): increase value if incomplete message

* feat: record tokenUsage when message is aborted

* refactor: subtract tokens when payload includes function_call

* refactor: add namespace for token_balance

* fix(spendTokens): only execute if corresponding token type amounts are defined

* refactor(checkBalance): throws Error if not enough token credits

* refactor(runTitleChain): pass and use signal, spread object props in create helpers, and use 'call' instead of 'run'

* fix(abortMiddleware): circular dependency, and default to empty string for completionTokens

* fix: properly cancel title requests when there isn't enough tokens to generate

* feat(predictNewSummary): custom chain for summaries to allow signal passing
refactor(summaryBuffer): use new custom chain

* feat(RunManager): add getRunByConversationId method, refactor: remove run and throw llm error on handleLLMError

* refactor(createStartHandler): if summary, add error details to runs

* fix(OpenAIClient): support aborting from summarization & showing error to user
refactor(summarizeMessages): remove unnecessary operations counting summaryPromptTokens and note for alternative, pass signal to summaryBuffer

* refactor(logTokenCost -> recordTokenUsage): rename

* refactor(checkBalance): include promptTokens in errorMessage

* refactor(checkBalance/spendTokens): move to models dir

* fix(createLanguageChain): correctly pass config

* refactor(initializeLLM/title): add tokenBuffer of 150 for balance check

* refactor(openAPIPlugin): pass signal and memory, filter functions by the one being called

* refactor(createStartHandler): add error to run if context is plugins as well

* refactor(RunManager/handleLLMError): throw error immediately if plugins, don't remove run

* refactor(PluginsClient): pass memory and signal to tools, cleanup error handling logic

* chore: use absolute equality for addTitle condition

* refactor(checkBalance): move checkBalance to execute after userMessage and tokenCounts are saved, also make conditional

* style: icon changes to match official

* fix(BaseClient): getTokenCountForResponse -> getTokenCount

* fix(formatLangChainMessages): add kwargs as fallback prop from lc_kwargs, update JSDoc

* refactor(Tx.create): does not update balance if CHECK_BALANCE is not enabled

* fix(e2e/cleanUp): cleanup new collections, import all model methods from index

* fix(config/add-balance): add uncaughtException listener

* fix: circular dependency

* refactor(initializeLLM/checkBalance): append new generations to errorMessage if cost exceeds balance

* fix(handleResponseMessage): only record token usage in this method if not error and completion is not skipped

* fix(createStartHandler): correct condition for generations

* chore: bump postcss due to moderate severity vulnerability

* chore: bump zod due to low severity vulnerability

* chore: bump openai & data-provider version

* feat(types): OpenAI Message types

* chore: update bun lockfile

* refactor(CodeBlock): add error block formatting

* refactor(utils/Plugin): factor out formatJSON and cn to separate files (json.ts and cn.ts), add extractJSON

* chore(logViolation): delete user_id after error is logged

* refactor(getMessageError -> Error): change to React.FC, add token_balance handling, use extractJSON to determine JSON instead of regex

* fix(DALL-E): use latest openai SDK

* chore: reorganize imports, fix type issue

* feat(server): add balance route

* fix(api/models): add auth

* feat(data-provider): /api/balance query

* feat: show balance if checking is enabled, refetch on final message or error

* chore: update docs, .env.example with token_usage info, add balance script command

* fix(Balance): fallback to empty obj for balance query

* style: slight adjustment of balance element

* docs(token_usage): add PR notes
2023-10-05 18:34:10 -04:00
Danny Avila
317a1bd8da
feat: ConversationSummaryBufferMemory (#973)
* refactor: pass model in message edit payload, use encoder in standalone util function

* feat: add summaryBuffer helper

* refactor(api/messages): use new countTokens helper and add auth middleware at top

* wip: ConversationSummaryBufferMemory

* refactor: move pre-generation helpers to prompts dir

* chore: remove console log

* chore: remove test as payload will no longer carry tokenCount

* chore: update getMessagesWithinTokenLimit JSDoc

* refactor: optimize getMessagesForConversation and also break on summary, feat(ci): getMessagesForConversation tests

* refactor(getMessagesForConvo): count '00000000-0000-0000-0000-000000000000' as root message

* chore: add newer model to token map

* fix: condition was point to prop of array instead of message prop

* refactor(BaseClient): use object for refineMessages param, rename 'summary' to 'summaryMessage', add previous_summary
refactor(getMessagesWithinTokenLimit): replace text and tokenCount if should summarize, summary, and summaryTokenCount are present
fix/refactor(handleContextStrategy): use the right comparison length for context diff, and replace payload first message when a summary is present

* chore: log previous_summary if debugging

* refactor(formatMessage): assume if role is defined that it's a valid value

* refactor(getMessagesWithinTokenLimit): remove summary logic
refactor(handleContextStrategy): add usePrevSummary logic in case only summary was pruned
refactor(loadHistory): initial message query will return all ordered messages but keep track of the latest summary
refactor(getMessagesForConversation): use object for single param, edit jsdoc, edit all files using the method
refactor(ChatGPTClient): order messages before buildPrompt is called, TODO: add convoSumBuffMemory logic

* fix: undefined handling and summarizing only when shouldRefineContext is true

* chore(BaseClient): fix test results omitting system role for summaries and test edge case

* chore: export summaryBuffer from index file

* refactor(OpenAIClient/BaseClient): move refineMessages to subclass, implement LLM initialization for summaryBuffer

* feat: add OPENAI_SUMMARIZE to enable summarizing, refactor: rename client prop 'shouldRefineContext' to 'shouldSummarize', change contextStrategy value to 'summarize' from 'refine'

* refactor: rename refineMessages method to summarizeMessages for clarity

* chore: clarify summary future intent in .env.example

* refactor(initializeLLM): handle case for either 'model' or 'modelName' being passed

* feat(gptPlugins): enable summarization for plugins

* refactor(gptPlugins): utilize new initializeLLM method and formatting methods for messages, use payload array for currentMessages and assign pastMessages sooner

* refactor(agents): use ConversationSummaryBufferMemory for both agent types

* refactor(formatMessage): optimize original method for langchain, add helper function for langchain messages, add JSDocs and tests

* refactor(summaryBuffer): add helper to createSummaryBufferMemory, and use new formatting helpers

* fix: forgot to spread formatMessages also took opportunity to pluralize filename

* refactor: pass memory to tools, namely openapi specs. not used and may never be used by new method but added for testing

* ci(formatMessages): add more exhaustive checks for langchain messages

* feat: add debug env var for OpenAI

* chore: delete unnecessary comments

* chore: add extra note about summary feature

* fix: remove tokenCount from payload instructions

* fix: test fail

* fix: only pass instructions to payload when defined or not empty object

* refactor: fromPromptMessages is deprecated, use renamed method fromMessages

* refactor: use 'includes' instead of 'startsWith' for extended OpenRouter compatibility

* fix(PluginsClient.buildPromptBody): handle undefined message strings

* chore: log langchain titling error

* feat: getModelMaxTokens helper

* feat: tokenSplit helper

* feat: summary prompts updated

* fix: optimize _CUT_OFF_SUMMARIZER prompt

* refactor(summaryBuffer): use custom summary prompt, allow prompt to be passed, pass humanPrefix and aiPrefix to memory, along with any future variables, rename messagesToRefine to context

* fix(summaryBuffer): handle edge case where messagesToRefine exceeds summary context,
refactor(BaseClient): allow custom maxContextTokens to be passed to getMessagesWithinTokenLimit, add defined check before unshifting summaryMessage, update shouldSummarize based on this
refactor(OpenAIClient): use getModelMaxTokens, use cut-off message method for summary if no messages were left after pruning

* fix(handleContextStrategy): handle case where incoming prompt is bigger than model context

* chore: rename refinedContent to splitText

* chore: remove unnecessary debug log
2023-09-26 21:02:28 -04:00