mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-16 16:30:15 +01:00
🚅 docs: Working Examples for LiteLLM, Docker, LibreChat and LiteLLM models for AWS, Azure, GCP (#2323)
Updated documentation with working config examples and clarifying many details. Added working examples for: * LiteLLM (litellm/litellm-config.yaml) * Docker (docker-compose.override.yml) * LibreChat (librechat.yaml) Added LiteLLM "ready to use" model for: * AWS Bedrock * Azure OpenAI * OpenAI * GCP
This commit is contained in:
parent
549026f677
commit
e80debb704
1 changed files with 201 additions and 2 deletions
|
|
@ -15,18 +15,193 @@ Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
|
|||
### 1. Uncomment desired sections in docker-compose.override.yml
|
||||
The override file contains sections for the below LiteLLM features
|
||||
|
||||
Minimum working `docker-compose.override.yml` Example:
|
||||
```
|
||||
litellm:
|
||||
image: ghcr.io/berriai/litellm:main-latest
|
||||
volumes:
|
||||
- ./litellm/litellm-config.yaml:/app/config.yaml
|
||||
# NOTE: For Google - required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
||||
# This also means you need to add the `application_default_credentaials.json` file within ~/litellm
|
||||
- ./litellm/application_default_credentials.json:/app/application_default_credentials.json
|
||||
ports:
|
||||
- "4000:8000"
|
||||
command: [ "--config", "/app/config.yaml", "--port", "8000", "--num_workers", "8" ]
|
||||
For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
||||
environment:
|
||||
GOOGLE_APPLICATION_CREDENTIALS: /app/application_default_credentials.json
|
||||
```
|
||||
|
||||
#### Caching with Redis
|
||||
Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching.
|
||||
|
||||
#### Performance Monitoring with Langfuse
|
||||
Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache.
|
||||
|
||||
### 2. Create a config.yaml for LiteLLM proxy
|
||||
LiteLLM requires a configuration file in addition to the override file. The file
|
||||
### 2. Create a Config for LiteLLM proxy
|
||||
LiteLLM requires a configuration file in addition to the override file. Within LibreChat, this will be `litellm/litellm-config.yml`. The file
|
||||
below has the options to enable llm proxy to various providers, load balancing, Redis caching, and Langfuse monitoring. Review documentation for other configuration options.
|
||||
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
|
||||
|
||||
#### Working Example of incorporating OpenAI, Azure OpenAI, AWS Bedrock, and GCP
|
||||
|
||||
Please note the `...` being a secret or a value you should not share (API key, custom tenant endpoint, etc)
|
||||
You can potentially use env variables for these too, ex: `api_key: "os.environ/AZURE_API_KEY" # does os.getenv("AZURE_API_KEY")`
|
||||
```yaml
|
||||
model_list:
|
||||
# https://litellm.vercel.app/docs/proxy/quick_start
|
||||
- model_name: claude-3-haiku
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-3-haiku-20240307-v1:0
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: claude-3-sonnet
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: claude-v2
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-v2:1
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: claude-instant
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-instant-v1
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: llama2-13b
|
||||
litellm_params:
|
||||
model: bedrock/meta.llama2-13b-chat-v1
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: llama2-70b
|
||||
litellm_params:
|
||||
model: bedrock/meta.llama2-70b-chat-v1
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: mistral-7b-instruct
|
||||
litellm_params:
|
||||
model: bedrock/mistral.mistral-7b-instruct-v0:2
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
- model_name: mixtral-8x7b-instruct
|
||||
litellm_params:
|
||||
model: bedrock/mistral.mixtral-8x7b-instruct-v0:1
|
||||
aws_region_name: us-east-1
|
||||
aws_access_key_id: A...
|
||||
aws_secret_access_key: ...
|
||||
|
||||
|
||||
- model_name: azure-gpt-4-turbo-preview
|
||||
litellm_params:
|
||||
model: azure/gpt-4-turbo-preview
|
||||
api_base: https://tenant.openai.azure.com/
|
||||
api_key: ...
|
||||
|
||||
- model_name: azure-gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-35-turbo
|
||||
api_base: https://tenant.openai.azure.com/
|
||||
api_key: ...
|
||||
|
||||
- model_name: azure-gpt-4
|
||||
litellm_params:
|
||||
model: azure/gpt-4
|
||||
api_base: https://tenant.openai.azure.com/
|
||||
api_key: ...
|
||||
|
||||
- model_name: azure-gpt-3.5-turbo-16k
|
||||
litellm_params:
|
||||
model: azure/gpt-35-turbo-16k
|
||||
api_base: https://tenant.openai.azure.com/
|
||||
api_key: ...
|
||||
|
||||
- model_name: azure-gpt-4-32k
|
||||
litellm_params:
|
||||
model: azure/gpt-4-32k
|
||||
api_base: https://tenant.openai.azure.com/
|
||||
api_key: ...
|
||||
|
||||
|
||||
- model_name: openai-gpt-4-turbo-preview
|
||||
litellm_params:
|
||||
model: gpt-4-turbo-preview
|
||||
api_key: sk-...
|
||||
|
||||
- model_name: openai-gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
api_key: sk-...
|
||||
|
||||
- model_name: openai-gpt-4
|
||||
litellm_params:
|
||||
model: gpt-4
|
||||
api_key: sk-...
|
||||
|
||||
- model_name: openai-gpt-3.5-turbo-16k
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo-16k
|
||||
api_key: sk-...
|
||||
|
||||
- model_name: openai-gpt-4-32k
|
||||
litellm_params:
|
||||
model: gpt-4-32k
|
||||
api_key: sk-...
|
||||
|
||||
- model_name: openai-gpt-4-vision-preview
|
||||
litellm_params:
|
||||
model: gpt-4-vision-preview
|
||||
api_key: sk-...
|
||||
|
||||
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
||||
- model_name: google-chat-bison
|
||||
litellm_params:
|
||||
model: vertex_ai/chat-bison
|
||||
vertex_project: ...
|
||||
vertex_location: us-central1
|
||||
|
||||
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
||||
- model_name: google-chat-bison-32k
|
||||
litellm_params:
|
||||
model: vertex_ai/chat-bison-32k
|
||||
vertex_project: ...
|
||||
vertex_location: us-central1
|
||||
|
||||
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
|
||||
- model_name: google-gemini-pro
|
||||
litellm_params:
|
||||
model: vertex_ai/gemini-pro
|
||||
vertex_project: ...
|
||||
vertex_location: us-central1
|
||||
|
||||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
cache: True
|
||||
cache_params:
|
||||
type: "redis"
|
||||
supported_call_types: ["acompletion", "completion", "embedding", "aembedding"]
|
||||
general_settings:
|
||||
master_key: sk_live_SetToRandomValue
|
||||
```
|
||||
|
||||
#### Example of a few Different Options (ex: rpm, stream, ollama)
|
||||
```yaml
|
||||
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
|
|
@ -66,10 +241,34 @@ general_settings:
|
|||
master_key: sk_live_SetToRandomValue
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 3. Configure LibreChat
|
||||
|
||||
Use `librechat.yaml` [Configuration file (guide here)](./ai_endpoints.md) to add Reverse Proxies as separate endpoints.
|
||||
|
||||
Here is an example config:
|
||||
|
||||
```
|
||||
custom:
|
||||
- name: "Lite LLM"
|
||||
# A place holder - otherwise it becomes the default (OpenAI) key
|
||||
# Provide the key instead in each "model" block within "litellm/litellm-config.yaml"
|
||||
apiKey: "sk-from-config-file"
|
||||
# See the required changes above in "Start LiteLLM Proxy Server" step.
|
||||
baseURL: "http://host.docker.internal:4000"
|
||||
# A "default" model to start new users with. The "fetch" will pull the rest of the available models from LiteLLM
|
||||
# More or less this is "irrelevant", you can pick any model. Just pick one you have defined in LiteLLM.
|
||||
models:
|
||||
default: ["gpt-3.5-turbo"]
|
||||
fetch: true
|
||||
titleConvo: true
|
||||
titleModel: "gpt-3.5-turbo"
|
||||
summarize: false
|
||||
summaryModel: "gpt-3.5-turbo"
|
||||
forcePrompt: false
|
||||
modelDisplayLabel: "Lite LLM"
|
||||
```
|
||||
---
|
||||
|
||||
### Why use LiteLLM?
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue