This commit is contained in:
Marco Beretta 2025-12-16 10:11:31 +08:00 committed by GitHub
commit c91bc818aa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 1111 additions and 357 deletions

View file

@ -806,7 +806,6 @@ class BaseClient {
user,
);
this.savedMessageIds.add(responseMessage.messageId);
delete responseMessage.tokenCount;
return responseMessage;
}

View file

@ -1,4 +1,5 @@
const { getModelMaxTokens } = require('@librechat/api');
const { TOKEN_DEFAULTS } = require('librechat-data-provider');
const BaseClient = require('../BaseClient');
class FakeClient extends BaseClient {
@ -41,7 +42,9 @@ class FakeClient extends BaseClient {
}
this.maxContextTokens =
this.options.maxContextTokens ?? getModelMaxTokens(this.modelOptions.model) ?? 4097;
this.options.maxContextTokens ??
getModelMaxTokens(this.modelOptions.model) ??
TOKEN_DEFAULTS.LEGACY_CONTEXT_FALLBACK;
}
buildMessages() {}
getTokenCount(str) {

View file

@ -1,5 +1,4 @@
const { maxTokensMap } = require('@librechat/api');
const { EModelEndpoint } = require('librechat-data-provider');
const { EModelEndpoint, maxTokensMap } = require('librechat-data-provider');
const {
defaultRate,
tokenValues,

View file

@ -240,6 +240,8 @@ class AgentClient extends BaseClient {
Object.assign(
{
endpoint: this.options.endpoint,
endpointType: this.options.endpointType,
model: this.options.agent?.model_parameters?.model,
agent_id: this.options.agent.id,
modelLabel: this.options.modelLabel,
maxContextTokens: this.options.maxContextTokens,

View file

@ -1,10 +1,8 @@
const { EModelEndpoint } = require('librechat-data-provider');
const { EModelEndpoint, maxTokensMap, maxOutputTokensMap } = require('librechat-data-provider');
const {
maxTokensMap,
matchModelName,
processModelData,
getModelMaxTokens,
maxOutputTokensMap,
findMatchingPattern,
} = require('@librechat/api');

View file

@ -18,7 +18,9 @@ import {
useQueryParams,
useSubmitMessage,
useFocusChatEffect,
useTokenUsageComputation,
} from '~/hooks';
import TokenUsageIndicator from './TokenUsageIndicator';
import { mainTextareaId, BadgeItem } from '~/common';
import AttachFileChat from './Files/AttachFileChat';
import FileFormChat from './Files/FileFormChat';
@ -39,6 +41,7 @@ const ChatForm = memo(({ index = 0 }: { index?: number }) => {
const submitButtonRef = useRef<HTMLButtonElement>(null);
const textAreaRef = useRef<HTMLTextAreaElement>(null);
useFocusChatEffect(textAreaRef);
useTokenUsageComputation();
const localize = useLocalize();
const [isCollapsed, setIsCollapsed] = useState(false);
@ -332,6 +335,7 @@ const ChatForm = memo(({ index = 0 }: { index?: number }) => {
}
/>
<div className="mx-auto flex" />
<TokenUsageIndicator />
{SpeechToText && (
<AudioRecorder
methods={methods}

View file

@ -0,0 +1,278 @@
import { memo } from 'react';
import { HoverCard, HoverCardTrigger, HoverCardContent, HoverCardPortal } from '@librechat/client';
import { useLocalize, useTokenUsage } from '~/hooks';
import { cn } from '~/utils';
function formatTokens(n: number): string {
return new Intl.NumberFormat(undefined, {
notation: 'compact',
maximumFractionDigits: 1,
}).format(n);
}
interface ProgressBarProps {
value: number;
max: number;
colorClass: string;
label: string;
showPercentage?: boolean;
indeterminate?: boolean;
}
function ProgressBar({
value,
max,
colorClass,
label,
showPercentage = false,
indeterminate = false,
}: ProgressBarProps) {
const percentage = max > 0 ? Math.min((value / max) * 100, 100) : 0;
return (
<div className="flex items-center gap-2">
<div
role="progressbar"
aria-valuenow={indeterminate ? undefined : Math.round(percentage)}
aria-valuemin={0}
aria-valuemax={100}
aria-label={label}
className="h-2 flex-1 overflow-hidden rounded-full bg-surface-secondary"
>
{indeterminate ? (
<div
className="h-full w-full rounded-full"
style={{
background:
'repeating-linear-gradient(-45deg, var(--border-medium), var(--border-medium) 4px, var(--surface-tertiary) 4px, var(--surface-tertiary) 8px)',
}}
/>
) : (
<div className="flex h-full rounded-full">
<div
className={cn('rounded-full transition-all duration-300', colorClass)}
style={{ width: `${percentage}%` }}
/>
<div className="flex-1 bg-surface-hover" />
</div>
)}
</div>
{showPercentage && !indeterminate && (
<span className="min-w-[3rem] text-right text-xs text-text-secondary" aria-hidden="true">
{Math.round(percentage)}%
</span>
)}
</div>
);
}
interface TokenRowProps {
label: string;
value: number;
total: number;
colorClass: string;
ariaLabel: string;
}
function TokenRow({ label, value, total, colorClass, ariaLabel }: TokenRowProps) {
const percentage = total > 0 ? Math.round((value / total) * 100) : 0;
return (
<div className="space-y-1">
<div className="flex items-center justify-between text-sm">
<span className="text-text-secondary">{label}</span>
<span className="font-medium text-text-primary">
{formatTokens(value)}
<span className="ml-1 text-xs text-text-secondary" aria-hidden="true">
({percentage}%)
</span>
</span>
</div>
<ProgressBar value={value} max={total} colorClass={colorClass} label={ariaLabel} />
</div>
);
}
function TokenUsageContent() {
const localize = useLocalize();
const { inputTokens = 0, outputTokens = 0, maxContext = null } = useTokenUsage() ?? {};
const totalUsed = inputTokens + outputTokens;
const hasMaxContext = maxContext !== null && maxContext > 0;
const percentage = hasMaxContext ? Math.min((totalUsed / maxContext) * 100, 100) : 0;
const getMainProgressColor = () => {
if (!hasMaxContext) {
return 'bg-text-secondary';
}
if (percentage > 90) {
return 'bg-red-500';
}
if (percentage > 75) {
return 'bg-yellow-500';
}
return 'bg-green-500';
};
const inputPercentage = totalUsed > 0 ? Math.round((inputTokens / totalUsed) * 100) : 0;
const outputPercentage = totalUsed > 0 ? Math.round((outputTokens / totalUsed) * 100) : 0;
return (
<div
className="w-full space-y-3"
role="region"
aria-label={localize('com_ui_token_usage_context')}
>
{/* Header */}
<div className="flex items-center justify-between">
<span className="text-sm font-medium text-text-primary" id="token-usage-title">
{localize('com_ui_token_usage_context')}
</span>
{hasMaxContext && (
<span
className={cn('text-xs font-medium', {
'text-red-500': percentage > 90,
'text-yellow-500': percentage > 75 && percentage <= 90,
'text-green-500': percentage <= 75,
})}
>
{localize('com_ui_token_usage_percent', { 0: Math.round(percentage).toString() })}
</span>
)}
</div>
{/* Main Progress Bar */}
<div className="space-y-1">
<ProgressBar
value={totalUsed}
max={hasMaxContext ? maxContext : 0}
colorClass={getMainProgressColor()}
label={
hasMaxContext
? `${localize('com_ui_token_usage_context')}: ${formatTokens(totalUsed)} of ${formatTokens(maxContext)}, ${Math.round(percentage)}%`
: `${localize('com_ui_token_usage_context')}: ${formatTokens(totalUsed)} tokens used, max context unknown`
}
indeterminate={!hasMaxContext}
/>
<div className="flex justify-between text-xs text-text-secondary" aria-hidden="true">
<span>{formatTokens(totalUsed)}</span>
<span>{hasMaxContext ? formatTokens(maxContext) : 'N/A'}</span>
</div>
</div>
{/* Divider */}
<div className="border-t border-border-light" role="separator" />
{/* Input/Output Breakdown */}
<div className="space-y-3">
<TokenRow
label={localize('com_ui_token_usage_input')}
value={inputTokens}
total={totalUsed}
colorClass="bg-blue-500"
ariaLabel={`${localize('com_ui_token_usage_input')}: ${formatTokens(inputTokens)}, ${inputPercentage}% of total`}
/>
<TokenRow
label={localize('com_ui_token_usage_output')}
value={outputTokens}
total={totalUsed}
colorClass="bg-green-500"
ariaLabel={`${localize('com_ui_token_usage_output')}: ${formatTokens(outputTokens)}, ${outputPercentage}% of total`}
/>
</div>
</div>
);
}
const TokenUsageIndicator = memo(function TokenUsageIndicator() {
const localize = useLocalize();
const { inputTokens = 0, outputTokens = 0, maxContext = null } = useTokenUsage() ?? {};
const totalUsed = inputTokens + outputTokens;
const hasMaxContext = maxContext !== null && maxContext > 0;
const percentage = hasMaxContext ? Math.min((totalUsed / maxContext) * 100, 100) : 0;
// Ring calculations
const size = 28;
const strokeWidth = 3.5;
const radius = (size - strokeWidth) / 2;
const circumference = 2 * Math.PI * radius;
const offset = circumference - (percentage / 100) * circumference;
const ariaLabel = hasMaxContext
? localize('com_ui_token_usage_aria_full', {
0: formatTokens(inputTokens),
1: formatTokens(outputTokens),
2: formatTokens(maxContext),
3: Math.round(percentage).toString(),
})
: localize('com_ui_token_usage_aria_no_max', {
0: formatTokens(inputTokens),
1: formatTokens(outputTokens),
});
// Color based on percentage
const getProgressColor = () => {
if (!hasMaxContext) {
return 'stroke-text-secondary';
}
if (percentage > 90) {
return 'stroke-red-500';
}
if (percentage > 75) {
return 'stroke-yellow-500';
}
return 'stroke-green-500';
};
return (
<HoverCard openDelay={200} closeDelay={100}>
<HoverCardTrigger asChild>
<button
type="button"
className="flex size-9 items-center justify-center rounded-full p-1 transition-colors hover:bg-surface-hover focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-ring"
aria-label={ariaLabel}
aria-haspopup="dialog"
>
<svg
width={size}
height={size}
viewBox={`0 0 ${size} ${size}`}
className="rotate-[-90deg]"
aria-hidden="true"
focusable="false"
>
{/* Background ring */}
<circle
cx={size / 2}
cy={size / 2}
r={radius}
fill="transparent"
strokeWidth={strokeWidth}
className="stroke-border-heavy"
/>
{/* Progress ring */}
<circle
cx={size / 2}
cy={size / 2}
r={radius}
fill="transparent"
strokeWidth={strokeWidth}
strokeDasharray={circumference}
strokeDashoffset={hasMaxContext ? offset : circumference}
strokeLinecap="round"
className={cn('transition-all duration-300', getProgressColor())}
/>
</svg>
</button>
</HoverCardTrigger>
<HoverCardPortal>
<HoverCardContent side="top" align="end" className="p-3">
<TokenUsageContent />
</HoverCardContent>
</HoverCardPortal>
</HoverCard>
);
});
export default TokenUsageIndicator;

View file

@ -35,3 +35,4 @@ export { default as useTextToSpeech } from './Input/useTextToSpeech';
export { default as useGenerationsByLatest } from './useGenerationsByLatest';
export { default as useLocalizedConfig } from './useLocalizedConfig';
export { default as useResourcePermissions } from './useResourcePermissions';
export { default as useTokenUsage, useTokenUsageComputation } from './useTokenUsage';

View file

@ -0,0 +1,107 @@
import { useEffect, useMemo } from 'react';
import { useParams } from 'react-router-dom';
import { useSetAtom, useAtomValue } from 'jotai';
import { getModelMaxTokens } from 'librechat-data-provider';
import type { TMessage } from 'librechat-data-provider';
import { tokenUsageAtom, type TokenUsage } from '~/store/tokenUsage';
import { useGetMessagesByConvoId } from '~/data-provider';
import { useChatContext } from '~/Providers';
/**
* Hook to compute and update token usage from conversation messages.
* Should be called in a component that has access to useChatContext.
*/
export function useTokenUsageComputation() {
const { conversation } = useChatContext();
const conversationId = conversation?.conversationId ?? '';
const setTokenUsage = useSetAtom(tokenUsageAtom);
const { conversationId: paramId } = useParams();
// Determine the query key to use - same logic as useChatHelpers
const queryParam = paramId === 'new' ? paramId : conversationId || paramId || '';
// Use the query hook to get reactive messages
// Subscribe to both the paramId-based key and conversationId-based key
const { data: messages } = useGetMessagesByConvoId(queryParam, {
enabled: !!queryParam,
});
// Also subscribe to the actual conversationId if different from queryParam
// This ensures we get updates when conversation transitions from 'new' to actual ID
const { data: messagesById } = useGetMessagesByConvoId(conversationId, {
enabled: !!conversationId && conversationId !== 'new' && conversationId !== queryParam,
});
// Use whichever has more messages (handles transition from new -> actual ID)
const effectiveMessages = useMemo(() => {
const msgArray = messages ?? [];
const msgByIdArray = messagesById ?? [];
return msgByIdArray.length > msgArray.length ? msgByIdArray : msgArray;
}, [messages, messagesById]);
// Compute token usage whenever messages change
const tokenData = useMemo(() => {
let inputTokens = 0;
let outputTokens = 0;
if (effectiveMessages && Array.isArray(effectiveMessages)) {
for (const msg of effectiveMessages as TMessage[]) {
const count = msg.tokenCount ?? 0;
if (msg.isCreatedByUser) {
inputTokens += count;
} else {
outputTokens += count;
}
}
}
// Determine max context: explicit setting or model default
let maxContext: number | null = conversation?.maxContextTokens ?? null;
// If no explicit maxContextTokens, try to look up model default
if (maxContext === null && conversation?.model) {
const endpoint = conversation.endpointType ?? conversation.endpoint ?? '';
const modelDefault = getModelMaxTokens(conversation.model, endpoint);
if (modelDefault !== undefined) {
maxContext = modelDefault;
}
}
return {
inputTokens,
outputTokens,
maxContext,
};
}, [
effectiveMessages,
conversation?.maxContextTokens,
conversation?.model,
conversation?.endpoint,
conversation?.endpointType,
]);
// Update the atom when computed values change
useEffect(() => {
setTokenUsage(tokenData);
}, [tokenData, setTokenUsage]);
// Reset token usage when starting a new conversation
useEffect(() => {
if (paramId === 'new' && effectiveMessages.length === 0) {
setTokenUsage({
inputTokens: 0,
outputTokens: 0,
maxContext: null,
});
}
}, [paramId, effectiveMessages.length, setTokenUsage]);
}
/**
* Hook to read the current token usage values.
*/
export function useTokenUsage(): TokenUsage {
return useAtomValue(tokenUsageAtom);
}
export default useTokenUsage;

View file

@ -1330,6 +1330,14 @@
"com_ui_token": "token",
"com_ui_token_exchange_method": "Token Exchange Method",
"com_ui_token_url": "Token URL",
"com_ui_token_usage_aria_full": "Token usage: {{0}} input, {{1}} output, {{2}} max context, {{3}}% used",
"com_ui_token_usage_aria_no_max": "Token usage: {{0}} input, {{1}} output",
"com_ui_token_usage_context": "Context Usage",
"com_ui_token_usage_input": "Input",
"com_ui_token_usage_max_context": "Max Context",
"com_ui_token_usage_output": "Output",
"com_ui_token_usage_percent": "{{0}}% used",
"com_ui_token_usage_total": "Total",
"com_ui_tokens": "tokens",
"com_ui_tool_collection_prefix": "A collection of tools from",
"com_ui_tool_list_collapse": "Collapse {{serverName}} tool list",

View file

@ -12,9 +12,11 @@ import lang from './language';
import settings from './settings';
import misc from './misc';
import isTemporary from './temporary';
import * as tokenUsage from './tokenUsage';
export * from './agents';
export * from './mcp';
export * from './favorites';
export * from './tokenUsage';
export default {
...artifacts,
@ -31,4 +33,5 @@ export default {
...settings,
...misc,
...isTemporary,
...tokenUsage,
};

View file

@ -0,0 +1,13 @@
import { atom } from 'jotai';
export type TokenUsage = {
inputTokens: number;
outputTokens: number;
maxContext: number | null; // null = N/A
};
export const tokenUsageAtom = atom<TokenUsage>({
inputTokens: 0,
outputTokens: 0,
maxContext: null,
});

View file

@ -7,6 +7,7 @@ import {
isAgentsEndpoint,
replaceSpecialVars,
providerEndpointMap,
TOKEN_DEFAULTS,
} from 'librechat-data-provider';
import type {
AgentToolResources,
@ -240,7 +241,7 @@ export async function initializeAgent(
providerEndpointMap[provider as keyof typeof providerEndpointMap],
options.endpointTokenConfig,
),
18000,
TOKEN_DEFAULTS.AGENT_CONTEXT_FALLBACK,
);
if (
@ -293,7 +294,7 @@ export async function initializeAgent(
agent.additional_instructions = artifactsPromptResult ?? undefined;
}
const agentMaxContextNum = Number(agentMaxContextTokens) || 18000;
const agentMaxContextNum = Number(agentMaxContextTokens) || TOKEN_DEFAULTS.AGENT_CONTEXT_FALLBACK;
const maxOutputTokensNum = Number(maxOutputTokens) || 0;
const finalAttachments: IMongoFile[] = (primedAttachments ?? [])
@ -308,7 +309,9 @@ export async function initializeAgent(
userMCPAuthMap,
toolContextMap: toolContextMap ?? {},
useLegacyContent: !!options.useLegacyContent,
maxContextTokens: Math.round((agentMaxContextNum - maxOutputTokensNum) * 0.9),
maxContextTokens: Math.round(
(agentMaxContextNum - maxOutputTokensNum) * TOKEN_DEFAULTS.CONTEXT_SAFETY_MARGIN,
),
};
return initializedAgent;

View file

@ -1,353 +1,7 @@
import z from 'zod';
import { EModelEndpoint } from 'librechat-data-provider';
import { EModelEndpoint, maxTokensMap, maxOutputTokensMap } from 'librechat-data-provider';
import type { EndpointTokenConfig, TokenConfig } from '~/types';
const openAIModels = {
'o4-mini': 200000,
'o3-mini': 195000, // -5000 from max
o3: 200000,
o1: 195000, // -5000 from max
'o1-mini': 127500, // -500 from max
'o1-preview': 127500, // -500 from max
'gpt-4': 8187, // -5 from max
'gpt-4-0613': 8187, // -5 from max
'gpt-4-32k': 32758, // -10 from max
'gpt-4-32k-0314': 32758, // -10 from max
'gpt-4-32k-0613': 32758, // -10 from max
'gpt-4-1106': 127500, // -500 from max
'gpt-4-0125': 127500, // -500 from max
'gpt-4.5': 127500, // -500 from max
'gpt-4.1': 1047576,
'gpt-4.1-mini': 1047576,
'gpt-4.1-nano': 1047576,
'gpt-5': 400000,
'gpt-5-mini': 400000,
'gpt-5-nano': 400000,
'gpt-5-pro': 400000,
'gpt-4o': 127500, // -500 from max
'gpt-4o-mini': 127500, // -500 from max
'gpt-4o-2024-05-13': 127500, // -500 from max
'gpt-4-turbo': 127500, // -500 from max
'gpt-4-vision': 127500, // -500 from max
'gpt-3.5-turbo': 16375, // -10 from max
'gpt-3.5-turbo-0613': 4092, // -5 from max
'gpt-3.5-turbo-0301': 4092, // -5 from max
'gpt-3.5-turbo-16k': 16375, // -10 from max
'gpt-3.5-turbo-16k-0613': 16375, // -10 from max
'gpt-3.5-turbo-1106': 16375, // -10 from max
'gpt-3.5-turbo-0125': 16375, // -10 from max
};
const mistralModels = {
'mistral-': 31990, // -10 from max
'mistral-7b': 31990, // -10 from max
'mistral-small': 31990, // -10 from max
'mixtral-8x7b': 31990, // -10 from max
'mixtral-8x22b': 65536,
'mistral-large': 131000,
'mistral-large-2402': 127500,
'mistral-large-2407': 127500,
'mistral-nemo': 131000,
'pixtral-large': 131000,
'mistral-saba': 32000,
codestral: 256000,
'ministral-8b': 131000,
'ministral-3b': 131000,
};
const cohereModels = {
'command-light': 4086, // -10 from max
'command-light-nightly': 8182, // -10 from max
command: 4086, // -10 from max
'command-nightly': 8182, // -10 from max
'command-text': 4086, // -10 from max
'command-r': 127500, // -500 from max
'command-r-plus': 127500, // -500 from max
};
const googleModels = {
/* Max I/O is combined so we subtract the amount from max response tokens for actual total */
gemma: 8196,
'gemma-2': 32768,
'gemma-3': 32768,
'gemma-3-27b': 131072,
gemini: 30720, // -2048 from max
'gemini-pro-vision': 12288,
'gemini-exp': 2000000,
'gemini-3': 1000000, // 1M input tokens, 64k output tokens
'gemini-2.5': 1000000, // 1M input tokens, 64k output tokens
'gemini-2.5-pro': 1000000,
'gemini-2.5-flash': 1000000,
'gemini-2.5-flash-lite': 1000000,
'gemini-2.0': 2000000,
'gemini-2.0-flash': 1000000,
'gemini-2.0-flash-lite': 1000000,
'gemini-1.5': 1000000,
'gemini-1.5-flash': 1000000,
'gemini-1.5-flash-8b': 1000000,
'text-bison-32k': 32758, // -10 from max
'chat-bison-32k': 32758, // -10 from max
'code-bison-32k': 32758, // -10 from max
'codechat-bison-32k': 32758,
/* Codey, -5 from max: 6144 */
'code-': 6139,
'codechat-': 6139,
/* PaLM2, -5 from max: 8192 */
'text-': 8187,
'chat-': 8187,
};
const anthropicModels = {
'claude-': 100000,
'claude-instant': 100000,
'claude-2': 100000,
'claude-2.1': 200000,
'claude-3': 200000,
'claude-3-haiku': 200000,
'claude-3-sonnet': 200000,
'claude-3-opus': 200000,
'claude-3.5-haiku': 200000,
'claude-3-5-haiku': 200000,
'claude-3-5-sonnet': 200000,
'claude-3.5-sonnet': 200000,
'claude-3-7-sonnet': 200000,
'claude-3.7-sonnet': 200000,
'claude-3-5-sonnet-latest': 200000,
'claude-3.5-sonnet-latest': 200000,
'claude-haiku-4-5': 200000,
'claude-sonnet-4': 1000000,
'claude-4': 200000,
'claude-opus-4': 200000,
'claude-opus-4-5': 200000,
};
const deepseekModels = {
deepseek: 128000,
'deepseek-chat': 128000,
'deepseek-reasoner': 128000,
'deepseek-r1': 128000,
'deepseek-v3': 128000,
'deepseek.r1': 128000,
};
const metaModels = {
// Basic patterns
llama3: 8000,
llama2: 4000,
'llama-3': 8000,
'llama-2': 4000,
// llama3.x pattern
'llama3.1': 127500,
'llama3.2': 127500,
'llama3.3': 127500,
// llama3-x pattern
'llama3-1': 127500,
'llama3-2': 127500,
'llama3-3': 127500,
// llama-3.x pattern
'llama-3.1': 127500,
'llama-3.2': 127500,
'llama-3.3': 127500,
// llama3.x:Nb pattern
'llama3.1:405b': 127500,
'llama3.1:70b': 127500,
'llama3.1:8b': 127500,
'llama3.2:1b': 127500,
'llama3.2:3b': 127500,
'llama3.2:11b': 127500,
'llama3.2:90b': 127500,
'llama3.3:70b': 127500,
// llama3-x-Nb pattern
'llama3-1-405b': 127500,
'llama3-1-70b': 127500,
'llama3-1-8b': 127500,
'llama3-2-1b': 127500,
'llama3-2-3b': 127500,
'llama3-2-11b': 127500,
'llama3-2-90b': 127500,
'llama3-3-70b': 127500,
// llama-3.x-Nb pattern
'llama-3.1-405b': 127500,
'llama-3.1-70b': 127500,
'llama-3.1-8b': 127500,
'llama-3.2-1b': 127500,
'llama-3.2-3b': 127500,
'llama-3.2-11b': 127500,
'llama-3.2-90b': 127500,
'llama-3.3-70b': 127500,
// Original llama2/3 patterns
'llama3-70b': 8000,
'llama3-8b': 8000,
'llama2-70b': 4000,
'llama2-13b': 4000,
'llama3:70b': 8000,
'llama3:8b': 8000,
'llama2:70b': 4000,
};
const qwenModels = {
qwen: 32000,
'qwen2.5': 32000,
'qwen-turbo': 1000000,
'qwen-plus': 131000,
'qwen-max': 32000,
'qwq-32b': 32000,
// Qwen3 models
qwen3: 40960, // Qwen3 base pattern (using qwen3-4b context)
'qwen3-8b': 128000,
'qwen3-14b': 40960,
'qwen3-30b-a3b': 40960,
'qwen3-32b': 40960,
'qwen3-235b-a22b': 40960,
// Qwen3 VL (Vision-Language) models
'qwen3-vl-8b-thinking': 256000,
'qwen3-vl-8b-instruct': 262144,
'qwen3-vl-30b-a3b': 262144,
'qwen3-vl-235b-a22b': 131072,
// Qwen3 specialized models
'qwen3-max': 256000,
'qwen3-coder': 262144,
'qwen3-coder-30b-a3b': 262144,
'qwen3-coder-plus': 128000,
'qwen3-coder-flash': 128000,
'qwen3-next-80b-a3b': 262144,
};
const ai21Models = {
'j2-mid': 8182, // -10 from max
'j2-ultra': 8182, // -10 from max
'jamba-instruct': 255500, // -500 from max
};
const amazonModels = {
// Amazon Titan models
'titan-text-lite': 4000,
'titan-text-express': 8000,
'titan-text-premier': 31500, // -500 from max
// Amazon Nova models
// https://aws.amazon.com/ai/generative-ai/nova/
'nova-micro': 127000, // -1000 from max
'nova-lite': 295000, // -5000 from max
'nova-pro': 295000, // -5000 from max
'nova-premier': 995000, // -5000 from max
};
const bedrockModels = {
...anthropicModels,
...mistralModels,
...cohereModels,
...deepseekModels,
...metaModels,
...ai21Models,
...amazonModels,
};
const xAIModels = {
grok: 131072,
'grok-beta': 131072,
'grok-vision-beta': 8192,
'grok-2': 131072,
'grok-2-latest': 131072,
'grok-2-1212': 131072,
'grok-2-vision': 32768,
'grok-2-vision-latest': 32768,
'grok-2-vision-1212': 32768,
'grok-3': 131072,
'grok-3-fast': 131072,
'grok-3-mini': 131072,
'grok-3-mini-fast': 131072,
'grok-4': 256000, // 256K context
'grok-4-fast': 2000000, // 2M context
'grok-4-1-fast': 2000000, // 2M context (covers reasoning & non-reasoning variants)
'grok-code-fast': 256000, // 256K context
};
const aggregateModels = {
...openAIModels,
...googleModels,
...bedrockModels,
...xAIModels,
...qwenModels,
// misc.
kimi: 131000,
// GPT-OSS
'gpt-oss': 131000,
'gpt-oss:20b': 131000,
'gpt-oss-20b': 131000,
'gpt-oss:120b': 131000,
'gpt-oss-120b': 131000,
// GLM models (Zhipu AI)
glm4: 128000,
'glm-4': 128000,
'glm-4-32b': 128000,
'glm-4.5': 131000,
'glm-4.5-air': 131000,
'glm-4.5v': 66000,
'glm-4.6': 200000,
};
export const maxTokensMap = {
[EModelEndpoint.azureOpenAI]: openAIModels,
[EModelEndpoint.openAI]: aggregateModels,
[EModelEndpoint.agents]: aggregateModels,
[EModelEndpoint.custom]: aggregateModels,
[EModelEndpoint.google]: googleModels,
[EModelEndpoint.anthropic]: anthropicModels,
[EModelEndpoint.bedrock]: bedrockModels,
};
export const modelMaxOutputs = {
o1: 32268, // -500 from max: 32,768
'o1-mini': 65136, // -500 from max: 65,536
'o1-preview': 32268, // -500 from max: 32,768
'gpt-5': 128000,
'gpt-5-mini': 128000,
'gpt-5-nano': 128000,
'gpt-5-pro': 128000,
'gpt-oss-20b': 131000,
'gpt-oss-120b': 131000,
system_default: 32000,
};
/** Outputs from https://docs.anthropic.com/en/docs/about-claude/models/all-models#model-names */
const anthropicMaxOutputs = {
'claude-3-haiku': 4096,
'claude-3-sonnet': 4096,
'claude-3-opus': 4096,
'claude-haiku-4-5': 64000,
'claude-sonnet-4': 64000,
'claude-opus-4': 32000,
'claude-opus-4-5': 64000,
'claude-3.5-sonnet': 8192,
'claude-3-5-sonnet': 8192,
'claude-3.7-sonnet': 128000,
'claude-3-7-sonnet': 128000,
};
/** Outputs from https://api-docs.deepseek.com/quick_start/pricing */
const deepseekMaxOutputs = {
deepseek: 8000, // deepseek-chat default: 4K, max: 8K
'deepseek-chat': 8000,
'deepseek-reasoner': 64000, // default: 32K, max: 64K
'deepseek-r1': 64000,
'deepseek-v3': 8000,
'deepseek.r1': 64000,
};
export const maxOutputTokensMap = {
[EModelEndpoint.anthropic]: anthropicMaxOutputs,
[EModelEndpoint.azureOpenAI]: modelMaxOutputs,
[EModelEndpoint.openAI]: { ...modelMaxOutputs, ...deepseekMaxOutputs },
[EModelEndpoint.custom]: { ...modelMaxOutputs, ...deepseekMaxOutputs },
};
/**
* Finds the first matching pattern in the tokens map.
* @param {string} modelName

View file

@ -0,0 +1,152 @@
import {
findMatchingPattern,
getModelMaxTokens,
getModelMaxOutputTokens,
matchModelName,
maxTokensMap,
} from '../src/tokens';
import { EModelEndpoint } from '../src/schemas';
describe('Token Pattern Matching', () => {
describe('findMatchingPattern', () => {
const testMap: Record<string, number> = {
'claude-': 100000,
'claude-3': 200000,
'claude-3-opus': 200000,
'gpt-4': 8000,
'gpt-4-turbo': 128000,
};
it('should match exact model names', () => {
expect(findMatchingPattern('claude-3-opus', testMap)).toBe('claude-3-opus');
expect(findMatchingPattern('gpt-4-turbo', testMap)).toBe('gpt-4-turbo');
});
it('should match more specific patterns first (reverse order)', () => {
// claude-3-opus-20240229 should match 'claude-3-opus' not 'claude-3' or 'claude-'
expect(findMatchingPattern('claude-3-opus-20240229', testMap)).toBe('claude-3-opus');
});
it('should fall back to broader patterns when no specific match', () => {
// claude-3-haiku should match 'claude-3' (not 'claude-3-opus')
expect(findMatchingPattern('claude-3-haiku', testMap)).toBe('claude-3');
});
it('should be case-insensitive', () => {
expect(findMatchingPattern('Claude-3-Opus', testMap)).toBe('claude-3-opus');
expect(findMatchingPattern('GPT-4-TURBO', testMap)).toBe('gpt-4-turbo');
});
it('should return null for unmatched models', () => {
expect(findMatchingPattern('unknown-model', testMap)).toBeNull();
expect(findMatchingPattern('llama-2', testMap)).toBeNull();
});
it('should NOT match when pattern appears in middle of model name (startsWith behavior)', () => {
// This is the key fix: "my-claude-wrapper" should NOT match "claude-"
expect(findMatchingPattern('my-claude-wrapper', testMap)).toBeNull();
expect(findMatchingPattern('openai-gpt-4-proxy', testMap)).toBeNull();
expect(findMatchingPattern('custom-claude-3-service', testMap)).toBeNull();
});
it('should handle empty string model name', () => {
expect(findMatchingPattern('', testMap)).toBeNull();
});
it('should handle empty tokens map', () => {
expect(findMatchingPattern('claude-3', {})).toBeNull();
});
});
describe('getModelMaxTokens', () => {
it('should return exact match tokens', () => {
expect(getModelMaxTokens('gpt-4o', EModelEndpoint.openAI)).toBe(127500);
expect(getModelMaxTokens('claude-3-opus', EModelEndpoint.anthropic)).toBe(200000);
});
it('should return pattern-matched tokens', () => {
// claude-3-opus-20240229 should match claude-3-opus pattern
expect(getModelMaxTokens('claude-3-opus-20240229', EModelEndpoint.anthropic)).toBe(200000);
});
it('should return undefined for unknown models', () => {
expect(getModelMaxTokens('completely-unknown-model', EModelEndpoint.openAI)).toBeUndefined();
});
it('should fall back to openAI for unknown endpoints', () => {
const result = getModelMaxTokens('gpt-4o', 'unknown-endpoint');
expect(result).toBe(127500);
});
it('should handle non-string input gracefully', () => {
expect(getModelMaxTokens(null as unknown as string)).toBeUndefined();
expect(getModelMaxTokens(undefined as unknown as string)).toBeUndefined();
expect(getModelMaxTokens(123 as unknown as string)).toBeUndefined();
});
it('should NOT match model names with pattern in middle', () => {
// A model like "my-gpt-4-wrapper" should not match "gpt-4"
expect(getModelMaxTokens('my-gpt-4-wrapper', EModelEndpoint.openAI)).toBeUndefined();
});
});
describe('getModelMaxOutputTokens', () => {
it('should return exact match output tokens', () => {
expect(getModelMaxOutputTokens('o1', EModelEndpoint.openAI)).toBe(32268);
expect(getModelMaxOutputTokens('claude-3-opus', EModelEndpoint.anthropic)).toBe(4096);
});
it('should return pattern-matched output tokens', () => {
expect(getModelMaxOutputTokens('claude-3-opus-20240229', EModelEndpoint.anthropic)).toBe(
4096,
);
});
it('should return system_default for unknown models (openAI endpoint)', () => {
expect(getModelMaxOutputTokens('unknown-model', EModelEndpoint.openAI)).toBe(32000);
});
it('should handle non-string input gracefully', () => {
expect(getModelMaxOutputTokens(null as unknown as string)).toBeUndefined();
expect(getModelMaxOutputTokens(undefined as unknown as string)).toBeUndefined();
});
});
describe('matchModelName', () => {
it('should return exact match model name', () => {
expect(matchModelName('gpt-4o', EModelEndpoint.openAI)).toBe('gpt-4o');
});
it('should return pattern key for pattern matches', () => {
expect(matchModelName('claude-3-opus-20240229', EModelEndpoint.anthropic)).toBe(
'claude-3-opus',
);
});
it('should return input for unknown models', () => {
expect(matchModelName('unknown-model', EModelEndpoint.openAI)).toBe('unknown-model');
});
it('should handle non-string input gracefully', () => {
expect(matchModelName(null as unknown as string)).toBeUndefined();
});
});
describe('maxTokensMap structure', () => {
it('should have entries for all major endpoints', () => {
expect(maxTokensMap[EModelEndpoint.openAI]).toBeDefined();
expect(maxTokensMap[EModelEndpoint.anthropic]).toBeDefined();
expect(maxTokensMap[EModelEndpoint.google]).toBeDefined();
expect(maxTokensMap[EModelEndpoint.azureOpenAI]).toBeDefined();
expect(maxTokensMap[EModelEndpoint.bedrock]).toBeDefined();
});
it('should have positive token values', () => {
Object.values(maxTokensMap).forEach((endpointMap) => {
Object.entries(endpointMap).forEach(([model, tokens]) => {
expect(tokens).toBeGreaterThan(0);
});
});
});
});
});

View file

@ -47,3 +47,5 @@ export { default as createPayload } from './createPayload';
/* feedback */
export * from './feedback';
export * from './parameterSettings';
/* token limits */
export * from './tokens';

View file

@ -618,6 +618,7 @@ export type TMessage = z.input<typeof tMessageSchema> & {
attachments?: TAttachment[];
clientTimestamp?: string;
feedback?: TFeedback;
tokenCount?: number;
};
export const coerceNumber = z.union([z.number(), z.string()]).transform((val) => {

View file

@ -0,0 +1,527 @@
import { EModelEndpoint } from './schemas';
/**
* Model context window token limits.
* These values represent the maximum context tokens (input) for each model.
* Values are slightly reduced from actual max to leave room for output tokens.
*/
const openAIModels: Record<string, number> = {
'o4-mini': 200000,
'o3-mini': 195000, // -5000 from max
o3: 200000,
o1: 195000, // -5000 from max
'o1-mini': 127500, // -500 from max
'o1-preview': 127500, // -500 from max
'gpt-4': 8187, // -5 from max
'gpt-4-0613': 8187, // -5 from max
'gpt-4-32k': 32758, // -10 from max
'gpt-4-32k-0314': 32758, // -10 from max
'gpt-4-32k-0613': 32758, // -10 from max
'gpt-4-1106': 127500, // -500 from max
'gpt-4-0125': 127500, // -500 from max
'gpt-4.5': 127500, // -500 from max
'gpt-4.1': 1047576,
'gpt-4.1-mini': 1047576,
'gpt-4.1-nano': 1047576,
'gpt-5': 400000,
'gpt-5-mini': 400000,
'gpt-5-nano': 400000,
'gpt-5-pro': 400000,
'gpt-4o': 127500, // -500 from max
'gpt-4o-mini': 127500, // -500 from max
'gpt-4o-2024-05-13': 127500, // -500 from max
'gpt-4-turbo': 127500, // -500 from max
'gpt-4-vision': 127500, // -500 from max
'gpt-3.5-turbo': 16375, // -10 from max
'gpt-3.5-turbo-0613': 4092, // -5 from max
'gpt-3.5-turbo-0301': 4092, // -5 from max
'gpt-3.5-turbo-16k': 16375, // -10 from max
'gpt-3.5-turbo-16k-0613': 16375, // -10 from max
'gpt-3.5-turbo-1106': 16375, // -10 from max
'gpt-3.5-turbo-0125': 16375, // -10 from max
};
const mistralModels: Record<string, number> = {
'mistral-': 31990, // -10 from max
'mistral-7b': 31990, // -10 from max
'mistral-small': 31990, // -10 from max
'mixtral-8x7b': 31990, // -10 from max
'mixtral-8x22b': 65536,
'mistral-large': 131000,
'mistral-large-2402': 127500,
'mistral-large-2407': 127500,
'mistral-nemo': 131000,
'pixtral-large': 131000,
'mistral-saba': 32000,
codestral: 256000,
'ministral-8b': 131000,
'ministral-3b': 131000,
};
const cohereModels: Record<string, number> = {
'command-light': 4086, // -10 from max
'command-light-nightly': 8182, // -10 from max
command: 4086, // -10 from max
'command-nightly': 8182, // -10 from max
'command-text': 4086, // -10 from max
'command-r': 127500, // -500 from max
'command-r-plus': 127500, // -500 from max
};
const googleModels: Record<string, number> = {
/* Max I/O is combined so we subtract the amount from max response tokens for actual total */
gemma: 8196,
'gemma-2': 32768,
'gemma-3': 32768,
'gemma-3-27b': 131072,
gemini: 30720, // -2048 from max
'gemini-pro-vision': 12288,
'gemini-exp': 2000000,
'gemini-3': 1000000, // 1M input tokens, 64k output tokens
'gemini-2.5': 1000000, // 1M input tokens, 64k output tokens
'gemini-2.5-pro': 1000000,
'gemini-2.5-flash': 1000000,
'gemini-2.5-flash-lite': 1000000,
'gemini-2.0': 2000000,
'gemini-2.0-flash': 1000000,
'gemini-2.0-flash-lite': 1000000,
'gemini-1.5': 1000000,
'gemini-1.5-flash': 1000000,
'gemini-1.5-flash-8b': 1000000,
'text-bison-32k': 32758, // -10 from max
'chat-bison-32k': 32758, // -10 from max
'code-bison-32k': 32758, // -10 from max
'codechat-bison-32k': 32758,
/* Codey, -5 from max: 6144 */
'code-': 6139,
'codechat-': 6139,
/* PaLM2, -5 from max: 8192 */
'text-': 8187,
'chat-': 8187,
};
const anthropicModels: Record<string, number> = {
'claude-': 100000,
'claude-instant': 100000,
'claude-2': 100000,
'claude-2.1': 200000,
'claude-3': 200000,
'claude-3-haiku': 200000,
'claude-3-sonnet': 200000,
'claude-3-opus': 200000,
'claude-3.5-haiku': 200000,
'claude-3-5-haiku': 200000,
'claude-3-5-sonnet': 200000,
'claude-3.5-sonnet': 200000,
'claude-3-7-sonnet': 200000,
'claude-3.7-sonnet': 200000,
'claude-3-5-sonnet-latest': 200000,
'claude-3.5-sonnet-latest': 200000,
'claude-haiku-4-5': 200000,
'claude-sonnet-4': 1000000,
'claude-4': 200000,
'claude-opus-4': 200000,
'claude-opus-4-5': 200000,
};
const deepseekModels: Record<string, number> = {
deepseek: 128000,
'deepseek-chat': 128000,
'deepseek-reasoner': 128000,
'deepseek-r1': 128000,
'deepseek-v3': 128000,
'deepseek.r1': 128000,
};
const metaModels: Record<string, number> = {
// Basic patterns
llama3: 8000,
llama2: 4000,
'llama-3': 8000,
'llama-2': 4000,
// llama3.x pattern
'llama3.1': 127500,
'llama3.2': 127500,
'llama3.3': 127500,
// llama3-x pattern
'llama3-1': 127500,
'llama3-2': 127500,
'llama3-3': 127500,
// llama-3.x pattern
'llama-3.1': 127500,
'llama-3.2': 127500,
'llama-3.3': 127500,
// llama3.x:Nb pattern
'llama3.1:405b': 127500,
'llama3.1:70b': 127500,
'llama3.1:8b': 127500,
'llama3.2:1b': 127500,
'llama3.2:3b': 127500,
'llama3.2:11b': 127500,
'llama3.2:90b': 127500,
'llama3.3:70b': 127500,
// llama3-x-Nb pattern
'llama3-1-405b': 127500,
'llama3-1-70b': 127500,
'llama3-1-8b': 127500,
'llama3-2-1b': 127500,
'llama3-2-3b': 127500,
'llama3-2-11b': 127500,
'llama3-2-90b': 127500,
'llama3-3-70b': 127500,
// llama-3.x-Nb pattern
'llama-3.1-405b': 127500,
'llama-3.1-70b': 127500,
'llama-3.1-8b': 127500,
'llama-3.2-1b': 127500,
'llama-3.2-3b': 127500,
'llama-3.2-11b': 127500,
'llama-3.2-90b': 127500,
'llama-3.3-70b': 127500,
// Original llama2/3 patterns
'llama3-70b': 8000,
'llama3-8b': 8000,
'llama2-70b': 4000,
'llama2-13b': 4000,
'llama3:70b': 8000,
'llama3:8b': 8000,
'llama2:70b': 4000,
};
const qwenModels: Record<string, number> = {
qwen: 32000,
'qwen2.5': 32000,
'qwen-turbo': 1000000,
'qwen-plus': 131000,
'qwen-max': 32000,
'qwq-32b': 32000,
// Qwen3 models
qwen3: 40960, // Qwen3 base pattern (using qwen3-4b context)
'qwen3-8b': 128000,
'qwen3-14b': 40960,
'qwen3-30b-a3b': 40960,
'qwen3-32b': 40960,
'qwen3-235b-a22b': 40960,
// Qwen3 VL (Vision-Language) models
'qwen3-vl-8b-thinking': 256000,
'qwen3-vl-8b-instruct': 262144,
'qwen3-vl-30b-a3b': 262144,
'qwen3-vl-235b-a22b': 131072,
// Qwen3 specialized models
'qwen3-max': 256000,
'qwen3-coder': 262144,
'qwen3-coder-30b-a3b': 262144,
'qwen3-coder-plus': 128000,
'qwen3-coder-flash': 128000,
'qwen3-next-80b-a3b': 262144,
};
const ai21Models: Record<string, number> = {
'j2-mid': 8182, // -10 from max
'j2-ultra': 8182, // -10 from max
'jamba-instruct': 255500, // -500 from max
};
const amazonModels: Record<string, number> = {
// Amazon Titan models
'titan-text-lite': 4000,
'titan-text-express': 8000,
'titan-text-premier': 31500, // -500 from max
// Amazon Nova models
// https://aws.amazon.com/ai/generative-ai/nova/
'nova-micro': 127000, // -1000 from max
'nova-lite': 295000, // -5000 from max
'nova-pro': 295000, // -5000 from max
'nova-premier': 995000, // -5000 from max
};
const bedrockModels: Record<string, number> = {
...anthropicModels,
...mistralModels,
...cohereModels,
...deepseekModels,
...metaModels,
...ai21Models,
...amazonModels,
};
const xAIModels: Record<string, number> = {
grok: 131072,
'grok-beta': 131072,
'grok-vision-beta': 8192,
'grok-2': 131072,
'grok-2-latest': 131072,
'grok-2-1212': 131072,
'grok-2-vision': 32768,
'grok-2-vision-latest': 32768,
'grok-2-vision-1212': 32768,
'grok-3': 131072,
'grok-3-fast': 131072,
'grok-3-mini': 131072,
'grok-3-mini-fast': 131072,
'grok-4': 256000, // 256K context
'grok-4-fast': 2000000, // 2M context
'grok-4-1-fast': 2000000, // 2M context (covers reasoning & non-reasoning variants)
'grok-code-fast': 256000, // 256K context
};
const aggregateModels: Record<string, number> = {
...openAIModels,
...googleModels,
...bedrockModels,
...xAIModels,
...qwenModels,
// misc.
kimi: 131000,
// GPT-OSS
'gpt-oss': 131000,
'gpt-oss:20b': 131000,
'gpt-oss-20b': 131000,
'gpt-oss:120b': 131000,
'gpt-oss-120b': 131000,
// GLM models (Zhipu AI)
glm4: 128000,
'glm-4': 128000,
'glm-4-32b': 128000,
'glm-4.5': 131000,
'glm-4.5-air': 131000,
'glm-4.5v': 66000,
'glm-4.6': 200000,
};
/**
* Map of endpoint to model context token limits.
*/
export const maxTokensMap: Record<string, Record<string, number>> = {
[EModelEndpoint.azureOpenAI]: openAIModels,
[EModelEndpoint.openAI]: aggregateModels,
[EModelEndpoint.agents]: aggregateModels,
[EModelEndpoint.custom]: aggregateModels,
[EModelEndpoint.google]: googleModels,
[EModelEndpoint.anthropic]: anthropicModels,
[EModelEndpoint.bedrock]: bedrockModels,
};
/**
* Finds the first matching pattern in the tokens map.
* Searches in reverse order to match more specific patterns first.
*
* Note: This relies on the insertion order of keys in the tokensMap object.
* More specific patterns must be defined later in the object to be matched first.
* If the order of keys is changed, the matching behavior may be affected.
*/
export function findMatchingPattern(
modelName: string,
tokensMap: Record<string, number>,
): string | null {
const keys = Object.keys(tokensMap);
const lowerModelName = modelName.toLowerCase();
for (let i = keys.length - 1; i >= 0; i--) {
const modelKey = keys[i];
if (lowerModelName.startsWith(modelKey)) {
return modelKey;
}
}
return null;
}
/**
* Retrieves the maximum context tokens for a given model name.
*
* @param modelName - The name of the model to look up.
* @param endpoint - The endpoint (default is 'openAI').
* @returns The maximum context tokens for the given model or undefined if no match is found.
*
* @example
* getModelMaxTokens('gpt-4o'); // Returns 127500
* getModelMaxTokens('claude-3-opus', 'anthropic'); // Returns 200000
* getModelMaxTokens('unknown-model'); // Returns undefined
*/
export function getModelMaxTokens(
modelName: string,
endpoint: string = EModelEndpoint.openAI,
): number | undefined {
if (typeof modelName !== 'string') {
return undefined;
}
const tokensMap = maxTokensMap[endpoint];
if (!tokensMap) {
// Fall back to aggregate models for unknown endpoints
return getModelMaxTokens(modelName, EModelEndpoint.openAI);
}
// Try exact match first
if (tokensMap[modelName] !== undefined) {
return tokensMap[modelName];
}
// Try pattern matching
const matchedPattern = findMatchingPattern(modelName, tokensMap);
if (matchedPattern) {
return tokensMap[matchedPattern];
}
return undefined;
}
/**
* Retrieves the model name key for a given model name input.
* If the exact model name isn't found, it searches for partial matches.
*
* @param modelName - The name of the model to look up.
* @param endpoint - The endpoint (default is 'openAI').
* @returns The model name key for the given model; returns input if no match is found.
*/
export function matchModelName(
modelName: string,
endpoint: string = EModelEndpoint.openAI,
): string | undefined {
if (typeof modelName !== 'string') {
return undefined;
}
const tokensMap = maxTokensMap[endpoint];
if (!tokensMap) {
return modelName;
}
if (tokensMap[modelName] !== undefined) {
return modelName;
}
const matchedPattern = findMatchingPattern(modelName, tokensMap);
return matchedPattern || modelName;
}
// Individual model maps are available for advanced use cases
// but not re-exported to avoid conflicts with config.ts
// =============================================================================
// OUTPUT TOKEN LIMITS
// =============================================================================
/**
* Maximum output tokens for OpenAI and similar models.
* Values from official documentation, slightly reduced to leave safety margin.
*/
const modelMaxOutputs: Record<string, number> = {
o1: 32268, // -500 from max: 32,768
'o1-mini': 65136, // -500 from max: 65,536
'o1-preview': 32268, // -500 from max: 32,768
'gpt-5': 128000,
'gpt-5-mini': 128000,
'gpt-5-nano': 128000,
'gpt-5-pro': 128000,
'gpt-oss-20b': 131000,
'gpt-oss-120b': 131000,
system_default: 32000,
};
/**
* Maximum output tokens for Anthropic Claude models.
* Values from https://docs.anthropic.com/en/docs/about-claude/models/all-models#model-names
*/
const anthropicMaxOutputs: Record<string, number> = {
'claude-3-haiku': 4096,
'claude-3-sonnet': 4096,
'claude-3-opus': 4096,
'claude-haiku-4-5': 64000,
'claude-sonnet-4': 64000,
'claude-opus-4': 32000,
'claude-opus-4-5': 64000,
'claude-3.5-sonnet': 8192,
'claude-3-5-sonnet': 8192,
'claude-3.7-sonnet': 128000,
'claude-3-7-sonnet': 128000,
};
/**
* Maximum output tokens for DeepSeek models.
* Values from https://api-docs.deepseek.com/quick_start/pricing
*/
const deepseekMaxOutputs: Record<string, number> = {
deepseek: 8000, // deepseek-chat default: 4K, max: 8K
'deepseek-chat': 8000,
'deepseek-reasoner': 64000, // default: 32K, max: 64K
'deepseek-r1': 64000,
'deepseek-v3': 8000,
'deepseek.r1': 64000,
};
/**
* Map of endpoint to model max output token limits.
*/
export const maxOutputTokensMap: Record<string, Record<string, number>> = {
[EModelEndpoint.anthropic]: anthropicMaxOutputs,
[EModelEndpoint.azureOpenAI]: modelMaxOutputs,
[EModelEndpoint.openAI]: { ...modelMaxOutputs, ...deepseekMaxOutputs },
[EModelEndpoint.custom]: { ...modelMaxOutputs, ...deepseekMaxOutputs },
};
/**
* Retrieves the maximum output tokens for a given model name.
*
* @param modelName - The name of the model to look up.
* @param endpoint - The endpoint (default is 'openAI').
* @returns The maximum output tokens for the given model or undefined if no match is found.
*
* @example
* getModelMaxOutputTokens('o1'); // Returns 32268
* getModelMaxOutputTokens('claude-3-opus', 'anthropic'); // Returns 4096
* getModelMaxOutputTokens('unknown-model'); // Returns 32000 (system_default)
*/
export function getModelMaxOutputTokens(
modelName: string,
endpoint: string = EModelEndpoint.openAI,
): number | undefined {
if (typeof modelName !== 'string') {
return undefined;
}
const tokensMap = maxOutputTokensMap[endpoint];
if (!tokensMap) {
// Fall back to openAI for unknown endpoints
return getModelMaxOutputTokens(modelName, EModelEndpoint.openAI);
}
// Try exact match first
if (tokensMap[modelName] !== undefined) {
return tokensMap[modelName];
}
// Try pattern matching
const matchedPattern = findMatchingPattern(modelName, tokensMap);
if (matchedPattern) {
return tokensMap[matchedPattern];
}
// Return system_default if available
return tokensMap.system_default;
}
// =============================================================================
// TOKEN DEFAULTS
// =============================================================================
/**
* Centralized token-related default values.
*/
export const TOKEN_DEFAULTS = {
/** Fallback context window for agents when model lookup fails */
AGENT_CONTEXT_FALLBACK: 18000,
/** Legacy fallback for older clients */
LEGACY_CONTEXT_FALLBACK: 4097,
/** Safety margin multiplier (0.9 = reserve 10% for response) */
CONTEXT_SAFETY_MARGIN: 0.9,
/** Default max output tokens when not specified */
DEFAULT_MAX_OUTPUT: 32000,
} as const;