mirror of
https://github.com/danny-avila/LibreChat.git
synced 2026-01-03 00:58:50 +01:00
🔄 refactor: Consolidate Tokenizer; Fix Jest Open Handles (#5175)
* refactor: consolidate tokenizer to singleton * fix: remove legacy tokenizer code, add Tokenizer singleton tests * ci: fix jest open handles
This commit is contained in:
parent
bf0a84e45a
commit
c26b54c74d
11 changed files with 202 additions and 221 deletions
|
|
@ -13,7 +13,6 @@ const {
|
|||
validateVisionModel,
|
||||
mapModelToAzureConfig,
|
||||
} = require('librechat-data-provider');
|
||||
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
|
||||
const {
|
||||
extractBaseURL,
|
||||
constructAzureURL,
|
||||
|
|
@ -29,6 +28,7 @@ const {
|
|||
createContextHandlers,
|
||||
} = require('./prompts');
|
||||
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
|
||||
const Tokenizer = require('~/server/services/Tokenizer');
|
||||
const { spendTokens } = require('~/models/spendTokens');
|
||||
const { isEnabled, sleep } = require('~/server/utils');
|
||||
const { handleOpenAIErrors } = require('./tools/util');
|
||||
|
|
@ -40,11 +40,6 @@ const { tokenSplit } = require('./document');
|
|||
const BaseClient = require('./BaseClient');
|
||||
const { logger } = require('~/config');
|
||||
|
||||
// Cache to store Tiktoken instances
|
||||
const tokenizersCache = {};
|
||||
// Counter for keeping track of the number of tokenizer calls
|
||||
let tokenizerCallsCount = 0;
|
||||
|
||||
class OpenAIClient extends BaseClient {
|
||||
constructor(apiKey, options = {}) {
|
||||
super(apiKey, options);
|
||||
|
|
@ -307,75 +302,8 @@ class OpenAIClient extends BaseClient {
|
|||
}
|
||||
}
|
||||
|
||||
// Selects an appropriate tokenizer based on the current configuration of the client instance.
|
||||
// It takes into account factors such as whether it's a chat completion, an unofficial chat GPT model, etc.
|
||||
selectTokenizer() {
|
||||
let tokenizer;
|
||||
this.encoding = 'text-davinci-003';
|
||||
if (this.isChatCompletion) {
|
||||
this.encoding = this.modelOptions.model.includes('gpt-4o') ? 'o200k_base' : 'cl100k_base';
|
||||
tokenizer = this.constructor.getTokenizer(this.encoding);
|
||||
} else if (this.isUnofficialChatGptModel) {
|
||||
const extendSpecialTokens = {
|
||||
'<|im_start|>': 100264,
|
||||
'<|im_end|>': 100265,
|
||||
};
|
||||
tokenizer = this.constructor.getTokenizer(this.encoding, true, extendSpecialTokens);
|
||||
} else {
|
||||
try {
|
||||
const { model } = this.modelOptions;
|
||||
this.encoding = model.includes('instruct') ? 'text-davinci-003' : model;
|
||||
tokenizer = this.constructor.getTokenizer(this.encoding, true);
|
||||
} catch {
|
||||
tokenizer = this.constructor.getTokenizer('text-davinci-003', true);
|
||||
}
|
||||
}
|
||||
|
||||
return tokenizer;
|
||||
}
|
||||
|
||||
// Retrieves a tokenizer either from the cache or creates a new one if one doesn't exist in the cache.
|
||||
// If a tokenizer is being created, it's also added to the cache.
|
||||
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
|
||||
let tokenizer;
|
||||
if (tokenizersCache[encoding]) {
|
||||
tokenizer = tokenizersCache[encoding];
|
||||
} else {
|
||||
if (isModelName) {
|
||||
tokenizer = encodingForModel(encoding, extendSpecialTokens);
|
||||
} else {
|
||||
tokenizer = getEncoding(encoding, extendSpecialTokens);
|
||||
}
|
||||
tokenizersCache[encoding] = tokenizer;
|
||||
}
|
||||
return tokenizer;
|
||||
}
|
||||
|
||||
// Frees all encoders in the cache and resets the count.
|
||||
static freeAndResetAllEncoders() {
|
||||
try {
|
||||
Object.keys(tokenizersCache).forEach((key) => {
|
||||
if (tokenizersCache[key]) {
|
||||
tokenizersCache[key].free();
|
||||
delete tokenizersCache[key];
|
||||
}
|
||||
});
|
||||
// Reset count
|
||||
tokenizerCallsCount = 1;
|
||||
} catch (error) {
|
||||
logger.error('[OpenAIClient] Free and reset encoders error', error);
|
||||
}
|
||||
}
|
||||
|
||||
// Checks if the cache of tokenizers has reached a certain size. If it has, it frees and resets all tokenizers.
|
||||
resetTokenizersIfNecessary() {
|
||||
if (tokenizerCallsCount >= 25) {
|
||||
if (this.options.debug) {
|
||||
logger.debug('[OpenAIClient] freeAndResetAllEncoders: reached 25 encodings, resetting...');
|
||||
}
|
||||
this.constructor.freeAndResetAllEncoders();
|
||||
}
|
||||
tokenizerCallsCount++;
|
||||
getEncoding() {
|
||||
return this.model?.includes('gpt-4o') ? 'o200k_base' : 'cl100k_base';
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -384,15 +312,8 @@ class OpenAIClient extends BaseClient {
|
|||
* @returns {number} The token count of the given text.
|
||||
*/
|
||||
getTokenCount(text) {
|
||||
this.resetTokenizersIfNecessary();
|
||||
try {
|
||||
const tokenizer = this.selectTokenizer();
|
||||
return tokenizer.encode(text, 'all').length;
|
||||
} catch (error) {
|
||||
this.constructor.freeAndResetAllEncoders();
|
||||
const tokenizer = this.selectTokenizer();
|
||||
return tokenizer.encode(text, 'all').length;
|
||||
}
|
||||
const encoding = this.getEncoding();
|
||||
return Tokenizer.getTokenCount(text, encoding);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue