🔄 refactor: Consolidate Tokenizer; Fix Jest Open Handles (#5175)

* refactor: consolidate tokenizer to singleton

* fix: remove legacy tokenizer code, add Tokenizer singleton tests

* ci: fix jest open handles
This commit is contained in:
Danny Avila 2025-01-03 18:11:14 -05:00 committed by GitHub
parent bf0a84e45a
commit c26b54c74d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 202 additions and 221 deletions

View file

@ -1,6 +1,5 @@
const Anthropic = require('@anthropic-ai/sdk');
const { HttpsProxyAgent } = require('https-proxy-agent');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const {
Constants,
EModelEndpoint,
@ -19,6 +18,7 @@ const {
} = require('./prompts');
const { getModelMaxTokens, getModelMaxOutputTokens, matchModelName } = require('~/utils');
const { spendTokens, spendStructuredTokens } = require('~/models/spendTokens');
const Tokenizer = require('~/server/services/Tokenizer');
const { sleep } = require('~/server/utils');
const BaseClient = require('./BaseClient');
const { logger } = require('~/config');
@ -26,8 +26,6 @@ const { logger } = require('~/config');
const HUMAN_PROMPT = '\n\nHuman:';
const AI_PROMPT = '\n\nAssistant:';
const tokenizersCache = {};
/** Helper function to introduce a delay before retrying */
function delayBeforeRetry(attempts, baseDelay = 1000) {
return new Promise((resolve) => setTimeout(resolve, baseDelay * attempts));
@ -149,7 +147,6 @@ class AnthropicClient extends BaseClient {
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
return this;
}
@ -849,22 +846,18 @@ class AnthropicClient extends BaseClient {
logger.debug('AnthropicClient doesn\'t use getBuildMessagesOptions');
}
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
getEncoding() {
return 'cl100k_base';
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
/**

View file

@ -6,7 +6,6 @@ const { ChatGoogleVertexAI } = require('@langchain/google-vertexai');
const { ChatGoogleGenerativeAI } = require('@langchain/google-genai');
const { GoogleGenerativeAI: GenAI } = require('@google/generative-ai');
const { AIMessage, HumanMessage, SystemMessage } = require('@langchain/core/messages');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const {
validateVisionModel,
getResponseSender,
@ -17,6 +16,7 @@ const {
AuthKeys,
} = require('librechat-data-provider');
const { encodeAndFormat } = require('~/server/services/Files/images');
const Tokenizer = require('~/server/services/Tokenizer');
const { getModelMaxTokens } = require('~/utils');
const { sleep } = require('~/server/utils');
const { logger } = require('~/config');
@ -31,7 +31,6 @@ const BaseClient = require('./BaseClient');
const loc = process.env.GOOGLE_LOC || 'us-central1';
const publisher = 'google';
const endpointPrefix = `${loc}-aiplatform.googleapis.com`;
const tokenizersCache = {};
const settings = endpointSettings[EModelEndpoint.google];
const EXCLUDED_GENAI_MODELS = /gemini-(?:1\.0|1-0|pro)/;
@ -177,25 +176,15 @@ class GoogleClient extends BaseClient {
// without tripping the stop sequences, so I'm using "||>" instead.
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
} else if (isTextModel) {
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true, {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
});
} else {
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated
// as a single token. So we're using this instead.
this.startToken = '||>';
this.endToken = '';
try {
this.gptEncoder = this.constructor.getTokenizer(this.modelOptions.model, true);
} catch {
this.gptEncoder = this.constructor.getTokenizer('text-davinci-003', true);
}
}
if (!this.modelOptions.stop) {
@ -926,23 +915,18 @@ class GoogleClient extends BaseClient {
];
}
/* TO-DO: Handle tokens with Google tokenization NOTE: these are required */
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
getEncoding() {
return 'cl100k_base';
}
/**
* Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
* @param {string} text - The text to get the token count for.
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
}

View file

@ -13,7 +13,6 @@ const {
validateVisionModel,
mapModelToAzureConfig,
} = require('librechat-data-provider');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const {
extractBaseURL,
constructAzureURL,
@ -29,6 +28,7 @@ const {
createContextHandlers,
} = require('./prompts');
const { encodeAndFormat } = require('~/server/services/Files/images/encode');
const Tokenizer = require('~/server/services/Tokenizer');
const { spendTokens } = require('~/models/spendTokens');
const { isEnabled, sleep } = require('~/server/utils');
const { handleOpenAIErrors } = require('./tools/util');
@ -40,11 +40,6 @@ const { tokenSplit } = require('./document');
const BaseClient = require('./BaseClient');
const { logger } = require('~/config');
// Cache to store Tiktoken instances
const tokenizersCache = {};
// Counter for keeping track of the number of tokenizer calls
let tokenizerCallsCount = 0;
class OpenAIClient extends BaseClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
@ -307,75 +302,8 @@ class OpenAIClient extends BaseClient {
}
}
// Selects an appropriate tokenizer based on the current configuration of the client instance.
// It takes into account factors such as whether it's a chat completion, an unofficial chat GPT model, etc.
selectTokenizer() {
let tokenizer;
this.encoding = 'text-davinci-003';
if (this.isChatCompletion) {
this.encoding = this.modelOptions.model.includes('gpt-4o') ? 'o200k_base' : 'cl100k_base';
tokenizer = this.constructor.getTokenizer(this.encoding);
} else if (this.isUnofficialChatGptModel) {
const extendSpecialTokens = {
'<|im_start|>': 100264,
'<|im_end|>': 100265,
};
tokenizer = this.constructor.getTokenizer(this.encoding, true, extendSpecialTokens);
} else {
try {
const { model } = this.modelOptions;
this.encoding = model.includes('instruct') ? 'text-davinci-003' : model;
tokenizer = this.constructor.getTokenizer(this.encoding, true);
} catch {
tokenizer = this.constructor.getTokenizer('text-davinci-003', true);
}
}
return tokenizer;
}
// Retrieves a tokenizer either from the cache or creates a new one if one doesn't exist in the cache.
// If a tokenizer is being created, it's also added to the cache.
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
let tokenizer;
if (tokenizersCache[encoding]) {
tokenizer = tokenizersCache[encoding];
} else {
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
}
return tokenizer;
}
// Frees all encoders in the cache and resets the count.
static freeAndResetAllEncoders() {
try {
Object.keys(tokenizersCache).forEach((key) => {
if (tokenizersCache[key]) {
tokenizersCache[key].free();
delete tokenizersCache[key];
}
});
// Reset count
tokenizerCallsCount = 1;
} catch (error) {
logger.error('[OpenAIClient] Free and reset encoders error', error);
}
}
// Checks if the cache of tokenizers has reached a certain size. If it has, it frees and resets all tokenizers.
resetTokenizersIfNecessary() {
if (tokenizerCallsCount >= 25) {
if (this.options.debug) {
logger.debug('[OpenAIClient] freeAndResetAllEncoders: reached 25 encodings, resetting...');
}
this.constructor.freeAndResetAllEncoders();
}
tokenizerCallsCount++;
getEncoding() {
return this.model?.includes('gpt-4o') ? 'o200k_base' : 'cl100k_base';
}
/**
@ -384,15 +312,8 @@ class OpenAIClient extends BaseClient {
* @returns {number} The token count of the given text.
*/
getTokenCount(text) {
this.resetTokenizersIfNecessary();
try {
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
} catch (error) {
this.constructor.freeAndResetAllEncoders();
const tokenizer = this.selectTokenizer();
return tokenizer.encode(text, 'all').length;
}
const encoding = this.getEncoding();
return Tokenizer.getTokenCount(text, encoding);
}
/**

View file

@ -1,5 +1,7 @@
jest.mock('~/cache/getLogStores');
require('dotenv').config();
const OpenAI = require('openai');
const getLogStores = require('~/cache/getLogStores');
const { fetchEventSource } = require('@waylaidwanderer/fetch-event-source');
const { genAzureChatCompletion } = require('~/utils/azureUtils');
const OpenAIClient = require('../OpenAIClient');
@ -134,7 +136,13 @@ OpenAI.mockImplementation(() => ({
}));
describe('OpenAIClient', () => {
let client, client2;
const mockSet = jest.fn();
const mockCache = { set: mockSet };
beforeEach(() => {
getLogStores.mockReturnValue(mockCache);
});
let client;
const model = 'gpt-4';
const parentMessageId = '1';
const messages = [
@ -176,7 +184,6 @@ describe('OpenAIClient', () => {
beforeEach(() => {
const options = { ...defaultOptions };
client = new OpenAIClient('test-api-key', options);
client2 = new OpenAIClient('test-api-key', options);
client.summarizeMessages = jest.fn().mockResolvedValue({
role: 'assistant',
content: 'Refined answer',
@ -185,7 +192,6 @@ describe('OpenAIClient', () => {
client.buildPrompt = jest
.fn()
.mockResolvedValue({ prompt: messages.map((m) => m.text).join('\n') });
client.constructor.freeAndResetAllEncoders();
client.getMessages = jest.fn().mockResolvedValue([]);
});
@ -335,77 +341,11 @@ describe('OpenAIClient', () => {
});
});
describe('selectTokenizer', () => {
it('should get the correct tokenizer based on the instance state', () => {
const tokenizer = client.selectTokenizer();
expect(tokenizer).toBeDefined();
});
});
describe('freeAllTokenizers', () => {
it('should free all tokenizers', () => {
// Create a tokenizer
const tokenizer = client.selectTokenizer();
// Mock 'free' method on the tokenizer
tokenizer.free = jest.fn();
client.constructor.freeAndResetAllEncoders();
// Check if 'free' method has been called on the tokenizer
expect(tokenizer.free).toHaveBeenCalled();
});
});
describe('getTokenCount', () => {
it('should return the correct token count', () => {
const count = client.getTokenCount('Hello, world!');
expect(count).toBeGreaterThan(0);
});
it('should reset the encoder and count when count reaches 25', () => {
const freeAndResetEncoderSpy = jest.spyOn(client.constructor, 'freeAndResetAllEncoders');
// Call getTokenCount 25 times
for (let i = 0; i < 25; i++) {
client.getTokenCount('test text');
}
expect(freeAndResetEncoderSpy).toHaveBeenCalled();
});
it('should not reset the encoder and count when count is less than 25', () => {
const freeAndResetEncoderSpy = jest.spyOn(client.constructor, 'freeAndResetAllEncoders');
freeAndResetEncoderSpy.mockClear();
// Call getTokenCount 24 times
for (let i = 0; i < 24; i++) {
client.getTokenCount('test text');
}
expect(freeAndResetEncoderSpy).not.toHaveBeenCalled();
});
it('should handle errors and reset the encoder', () => {
const freeAndResetEncoderSpy = jest.spyOn(client.constructor, 'freeAndResetAllEncoders');
// Mock encode function to throw an error
client.selectTokenizer().encode = jest.fn().mockImplementation(() => {
throw new Error('Test error');
});
client.getTokenCount('test text');
expect(freeAndResetEncoderSpy).toHaveBeenCalled();
});
it('should not throw null pointer error when freeing the same encoder twice', () => {
client.constructor.freeAndResetAllEncoders();
client2.constructor.freeAndResetAllEncoders();
const count = client2.getTokenCount('test text');
expect(count).toBeGreaterThan(0);
});
});
describe('getSaveOptions', () => {
@ -548,7 +488,6 @@ describe('OpenAIClient', () => {
testCases.forEach((testCase) => {
it(`should return ${testCase.expected} tokens for model ${testCase.model}`, () => {
client.modelOptions.model = testCase.model;
client.selectTokenizer();
// 3 tokens for assistant label
let totalTokens = 3;
for (let message of example_messages) {
@ -582,7 +521,6 @@ describe('OpenAIClient', () => {
it(`should return ${expectedTokens} tokens for model ${visionModel} (Vision Request)`, () => {
client.modelOptions.model = visionModel;
client.selectTokenizer();
// 3 tokens for assistant label
let totalTokens = 3;
for (let message of vision_request) {