🦙 docs: fix litellm.md (#2566)

This commit is contained in:
Fuegovic 2024-04-28 08:33:51 -04:00 committed by GitHub
parent 463ca5d613
commit ba4fa6150e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -12,11 +12,13 @@ Use **[LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy)** for:
* Authentication & Spend Tracking Virtual Keys
## Start LiteLLM Proxy Server
### 1. Uncomment desired sections in docker-compose.override.yml
## 1. Uncomment desired sections in docker-compose.override.yml
The override file contains sections for the below LiteLLM features
Minimum working `docker-compose.override.yml` Example:
```
```yaml
litellm:
image: ghcr.io/berriai/litellm:main-latest
volumes:
@ -32,24 +34,29 @@ litellm:
GOOGLE_APPLICATION_CREDENTIALS: /app/application_default_credentials.json
```
#### Caching with Redis
### Caching with Redis
Litellm supports in-memory, redis, and s3 caching. Note: Caching currently only works with exact matching.
#### Performance Monitoring with Langfuse
### Performance Monitoring with Langfuse
Litellm supports various logging and observability options. The settings below will enable Langfuse which will provide a cache_hit tag showing which conversations used cache.
### 2. Create a Config for LiteLLM proxy
## 2. Create a Config for LiteLLM proxy
LiteLLM requires a configuration file in addition to the override file. Within LibreChat, this will be `litellm/litellm-config.yml`. The file
below has the options to enable llm proxy to various providers, load balancing, Redis caching, and Langfuse monitoring. Review documentation for other configuration options.
More information on LiteLLM configurations here: **[docs.litellm.ai/docs/simple_proxy](https://docs.litellm.ai/docs/simple_proxy)**
#### Working Example of incorporating OpenAI, Azure OpenAI, AWS Bedrock, and GCP
### Working Example of incorporating OpenAI, Azure OpenAI, AWS Bedrock, and GCP
Please note the `...` being a secret or a value you should not share (API key, custom tenant endpoint, etc)
You can potentially use env variables for these too, ex: `api_key: "os.environ/AZURE_API_KEY" # does os.getenv("AZURE_API_KEY")`
??? abstract "Example A"
```yaml
model_list:
# https://litellm.vercel.app/docs/proxy/quick_start
# Anthropic
- model_name: claude-3-haiku
litellm_params:
model: bedrock/anthropic.claude-3-haiku-20240307-v1:0
@ -85,6 +92,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# Llama
- model_name: llama2-13b
litellm_params:
model: bedrock/meta.llama2-13b-chat-v1
@ -113,7 +121,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# Mistral
- model_name: mistral-7b-instruct
litellm_params:
model: bedrock/mistral.mistral-7b-instruct-v0:2
@ -135,6 +143,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# Cohere
- model_name: cohere-command-v14
litellm_params:
model: bedrock/cohere.command-text-v14
@ -149,6 +158,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# AI21 Labs
- model_name: ai21-j2-mid
litellm_params:
model: bedrock/ai21.j2-mid-v1
@ -163,6 +173,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# Amazon
- model_name: amazon-titan-lite
litellm_params:
model: bedrock/amazon.titan-text-lite-v1
@ -177,9 +188,7 @@ model_list:
aws_access_key_id: A...
aws_secret_access_key: ...
# Azure
- model_name: azure-gpt-4-turbo-preview
litellm_params:
model: azure/gpt-4-turbo-preview
@ -210,8 +219,7 @@ model_list:
api_base: https://tenant-name.openai.azure.com/
api_key: ...
# OpenAI
- model_name: gpt-4-turbo
litellm_params:
model: gpt-4-turbo
@ -247,30 +255,26 @@ model_list:
model: gpt-4-vision-preview
api_key: ...
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
# Google
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" environment and volume mount
- model_name: google-chat-bison
litellm_params:
model: vertex_ai/chat-bison
vertex_project: gcp-proj-name
vertex_location: us-central1
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
- model_name: google-chat-bison-32k
litellm_params:
model: vertex_ai/chat-bison-32k
vertex_project: gcp-proj-name
vertex_location: us-central1
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
- model_name: google-gemini-pro-1.0
litellm_params:
model: vertex_ai/gemini-pro
vertex_project: gcp-proj-name
vertex_location: us-central1
# NOTE: For Google - see above about required auth "GOOGLE_APPLICATION_CREDENTIALS" envronment and volume mount
- model_name: google-gemini-pro-1.5-preview
litellm_params:
model: vertex_ai/gemini-1.5-pro-preview-0409
@ -288,9 +292,10 @@ general_settings:
master_key: sk_live_SetToRandomValue
```
#### Example of a few Different Options (ex: rpm, stream, ollama)
```yaml
### Example of a few Different Options (ex: rpm, stream, ollama)
??? abstract "Example B"
```yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
@ -330,15 +335,13 @@ general_settings:
master_key: sk_live_SetToRandomValue
```
### 3. Configure LibreChat
## 3. Configure LibreChat
Use `librechat.yaml` [Configuration file (guide here)](./ai_endpoints.md) to add Reverse Proxies as separate endpoints.
Here is an example config:
```
```yaml
custom:
- name: "Lite LLM"
# A place holder - otherwise it becomes the default (OpenAI) key
@ -358,9 +361,8 @@ custom:
forcePrompt: false
modelDisplayLabel: "Lite LLM"
```
---
### Why use LiteLLM?
## Why use LiteLLM?
1. **Access to Multiple LLMs**: It allows calling over 100 LLMs from platforms like Huggingface, Bedrock, TogetherAI, etc., using OpenAI's ChatCompletions and Completions format.