mirror of
https://github.com/danny-avila/LibreChat.git
synced 2025-12-18 17:30:16 +01:00
🧵 refactor: Migrate Endpoint Initialization to TypeScript (#10794)
* refactor: move endpoint initialization methods to typescript * refactor: move agent init to packages/api - Introduced `initialize.ts` for agent initialization, including file processing and tool loading. - Updated `resources.ts` to allow optional appConfig parameter. - Enhanced endpoint configuration handling in various initialization files to support model parameters. - Added new artifacts and prompts for React component generation. - Refactored existing code to improve type safety and maintainability. * refactor: streamline endpoint initialization and enhance type safety - Updated initialization functions across various endpoints to use a consistent request structure, replacing `unknown` types with `ServerResponse`. - Simplified request handling by directly extracting keys from the request body. - Improved type safety by ensuring user IDs are safely accessed with optional chaining. - Removed unnecessary parameters and streamlined model options handling for better clarity and maintainability. * refactor: moved ModelService and extractBaseURL to packages/api - Added comprehensive tests for the models fetching functionality, covering scenarios for OpenAI, Anthropic, Google, and Ollama models. - Updated existing endpoint index to include the new models module. - Enhanced utility functions for URL extraction and model data processing. - Improved type safety and error handling across the models fetching logic. * refactor: consolidate utility functions and remove unused files - Merged `deriveBaseURL` and `extractBaseURL` into the `@librechat/api` module for better organization. - Removed redundant utility files and their associated tests to streamline the codebase. - Updated imports across various client files to utilize the new consolidated functions. - Enhanced overall maintainability by reducing the number of utility modules. * refactor: replace ModelService references with direct imports from @librechat/api and remove ModelService file * refactor: move encrypt/decrypt methods and key db methods to data-schemas, use `getProviderConfig` from `@librechat/api` * chore: remove unused 'res' from options in AgentClient * refactor: file model imports and methods - Updated imports in various controllers and services to use the unified file model from '~/models' instead of '~/models/File'. - Consolidated file-related methods into a new file methods module in the data-schemas package. - Added comprehensive tests for file methods including creation, retrieval, updating, and deletion. - Enhanced the initializeAgent function to accept dependency injection for file-related methods. - Improved error handling and logging in file methods. * refactor: streamline database method references in agent initialization * refactor: enhance file method tests and update type references to IMongoFile * refactor: consolidate database method imports in agent client and initialization * chore: remove redundant import of initializeAgent from @librechat/api * refactor: move checkUserKeyExpiry utility to @librechat/api and update references across endpoints * refactor: move updateUserPlugins logic to user.ts and simplify UserController * refactor: update imports for user key management and remove UserService * refactor: remove unused Anthropics and Bedrock endpoint files and clean up imports * refactor: consolidate and update encryption imports across various files to use @librechat/data-schemas * chore: update file model mock to use unified import from '~/models' * chore: import order * refactor: remove migrated to TS agent.js file and its associated logic from the endpoints * chore: add reusable function to extract imports from source code in unused-packages workflow * chore: enhance unused-packages workflow to include @librechat/api dependencies and improve dependency extraction * chore: improve dependency extraction in unused-packages workflow with enhanced error handling and debugging output * chore: add detailed debugging output to unused-packages workflow for better visibility into unused dependencies and exclusion lists * chore: refine subpath handling in unused-packages workflow to correctly process scoped and non-scoped package imports * chore: clean up unused debug output in unused-packages workflow and reorganize type imports in initialize.ts
This commit is contained in:
parent
f2ba1696bc
commit
b478560c81
103 changed files with 4135 additions and 2647 deletions
383
packages/api/src/endpoints/models.ts
Normal file
383
packages/api/src/endpoints/models.ts
Normal file
|
|
@ -0,0 +1,383 @@
|
|||
import axios from 'axios';
|
||||
import { logger } from '@librechat/data-schemas';
|
||||
import { HttpsProxyAgent } from 'https-proxy-agent';
|
||||
import { CacheKeys, KnownEndpoints, EModelEndpoint, defaultModels } from 'librechat-data-provider';
|
||||
import type { IUser } from '@librechat/data-schemas';
|
||||
import {
|
||||
processModelData,
|
||||
extractBaseURL,
|
||||
isUserProvided,
|
||||
resolveHeaders,
|
||||
deriveBaseURL,
|
||||
logAxiosError,
|
||||
inputSchema,
|
||||
} from '~/utils';
|
||||
import { standardCache } from '~/cache';
|
||||
|
||||
export interface FetchModelsParams {
|
||||
/** User ID for API requests */
|
||||
user?: string;
|
||||
/** API key for authentication */
|
||||
apiKey: string;
|
||||
/** Base URL for the API */
|
||||
baseURL?: string;
|
||||
/** Endpoint name (defaults to 'openAI') */
|
||||
name?: string;
|
||||
/** Whether directEndpoint was configured */
|
||||
direct?: boolean;
|
||||
/** Whether to fetch from Azure */
|
||||
azure?: boolean;
|
||||
/** Whether to send user ID as query parameter */
|
||||
userIdQuery?: boolean;
|
||||
/** Whether to create token configuration from API response */
|
||||
createTokenConfig?: boolean;
|
||||
/** Cache key for token configuration (uses name if omitted) */
|
||||
tokenKey?: string;
|
||||
/** Optional headers for the request */
|
||||
headers?: Record<string, string> | null;
|
||||
/** Optional user object for header resolution */
|
||||
userObject?: Partial<IUser>;
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches Ollama models from the specified base API path.
|
||||
* @param baseURL - The Ollama server URL
|
||||
* @param options - Optional configuration
|
||||
* @returns Promise resolving to array of model names
|
||||
*/
|
||||
async function fetchOllamaModels(
|
||||
baseURL: string,
|
||||
options: { headers?: Record<string, string> | null; user?: Partial<IUser> } = {},
|
||||
): Promise<string[]> {
|
||||
if (!baseURL) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const ollamaEndpoint = deriveBaseURL(baseURL);
|
||||
|
||||
const resolvedHeaders = resolveHeaders({
|
||||
headers: options.headers ?? undefined,
|
||||
user: options.user,
|
||||
});
|
||||
|
||||
const response = await axios.get<{ models: Array<{ name: string }> }>(
|
||||
`${ollamaEndpoint}/api/tags`,
|
||||
{
|
||||
headers: resolvedHeaders,
|
||||
timeout: 5000,
|
||||
},
|
||||
);
|
||||
|
||||
return response.data.models.map((tag) => tag.name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits a string by commas and trims each resulting value.
|
||||
* @param input - The input string to split.
|
||||
* @returns An array of trimmed values.
|
||||
*/
|
||||
export function splitAndTrim(input: string | null | undefined): string[] {
|
||||
if (!input || typeof input !== 'string') {
|
||||
return [];
|
||||
}
|
||||
return input
|
||||
.split(',')
|
||||
.map((item) => item.trim())
|
||||
.filter(Boolean);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches models from the specified base API path or Azure, based on the provided configuration.
|
||||
*
|
||||
* @param params - The parameters for fetching the models.
|
||||
* @returns A promise that resolves to an array of model identifiers.
|
||||
*/
|
||||
export async function fetchModels({
|
||||
user,
|
||||
apiKey,
|
||||
baseURL: _baseURL,
|
||||
name = EModelEndpoint.openAI,
|
||||
direct = false,
|
||||
azure = false,
|
||||
userIdQuery = false,
|
||||
createTokenConfig = true,
|
||||
tokenKey,
|
||||
headers,
|
||||
userObject,
|
||||
}: FetchModelsParams): Promise<string[]> {
|
||||
let models: string[] = [];
|
||||
const baseURL = direct ? extractBaseURL(_baseURL ?? '') : _baseURL;
|
||||
|
||||
if (!baseURL && !azure) {
|
||||
return models;
|
||||
}
|
||||
|
||||
if (!apiKey) {
|
||||
return models;
|
||||
}
|
||||
|
||||
if (name && name.toLowerCase().startsWith(KnownEndpoints.ollama)) {
|
||||
try {
|
||||
return await fetchOllamaModels(baseURL ?? '', { headers, user: userObject });
|
||||
} catch (ollamaError) {
|
||||
const logMessage =
|
||||
'Failed to fetch models from Ollama API. Attempting to fetch via OpenAI-compatible endpoint.';
|
||||
logAxiosError({ message: logMessage, error: ollamaError as Error });
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
const options: {
|
||||
headers: Record<string, string>;
|
||||
timeout: number;
|
||||
httpsAgent?: HttpsProxyAgent;
|
||||
} = {
|
||||
headers: {
|
||||
...(headers ?? {}),
|
||||
},
|
||||
timeout: 5000,
|
||||
};
|
||||
|
||||
if (name === EModelEndpoint.anthropic) {
|
||||
options.headers = {
|
||||
'x-api-key': apiKey,
|
||||
'anthropic-version': process.env.ANTHROPIC_VERSION || '2023-06-01',
|
||||
};
|
||||
} else {
|
||||
options.headers.Authorization = `Bearer ${apiKey}`;
|
||||
}
|
||||
|
||||
if (process.env.PROXY) {
|
||||
options.httpsAgent = new HttpsProxyAgent(process.env.PROXY);
|
||||
}
|
||||
|
||||
if (process.env.OPENAI_ORGANIZATION && baseURL?.includes('openai')) {
|
||||
options.headers['OpenAI-Organization'] = process.env.OPENAI_ORGANIZATION;
|
||||
}
|
||||
|
||||
const url = new URL(`${(baseURL ?? '').replace(/\/+$/, '')}${azure ? '' : '/models'}`);
|
||||
if (user && userIdQuery) {
|
||||
url.searchParams.append('user', user);
|
||||
}
|
||||
const res = await axios.get(url.toString(), options);
|
||||
|
||||
const input = res.data;
|
||||
|
||||
const validationResult = inputSchema.safeParse(input);
|
||||
if (validationResult.success && createTokenConfig) {
|
||||
const endpointTokenConfig = processModelData(input);
|
||||
const cache = standardCache(CacheKeys.TOKEN_CONFIG);
|
||||
await cache.set(tokenKey ?? name, endpointTokenConfig);
|
||||
}
|
||||
models = input.data.map((item: { id: string }) => item.id);
|
||||
} catch (error) {
|
||||
const logMessage = `Failed to fetch models from ${azure ? 'Azure ' : ''}${name} API`;
|
||||
logAxiosError({ message: logMessage, error: error as Error });
|
||||
}
|
||||
|
||||
return models;
|
||||
}
|
||||
|
||||
/** Options for fetching OpenAI models */
|
||||
export interface GetOpenAIModelsOptions {
|
||||
/** User ID for API requests */
|
||||
user?: string;
|
||||
/** Whether to fetch from Azure */
|
||||
azure?: boolean;
|
||||
/** Whether to fetch models for the Assistants endpoint */
|
||||
assistants?: boolean;
|
||||
/** OpenAI API key (if not using environment variable) */
|
||||
openAIApiKey?: string;
|
||||
/** Whether user provides their own API key */
|
||||
userProvidedOpenAI?: boolean;
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches models from OpenAI or Azure based on the provided options.
|
||||
* @param opts - Options for fetching models
|
||||
* @param _models - Fallback models array
|
||||
* @returns Promise resolving to array of model IDs
|
||||
*/
|
||||
export async function fetchOpenAIModels(
|
||||
opts: GetOpenAIModelsOptions,
|
||||
_models: string[] = [],
|
||||
): Promise<string[]> {
|
||||
let models = _models.slice() ?? [];
|
||||
const apiKey = opts.openAIApiKey ?? process.env.OPENAI_API_KEY;
|
||||
const openaiBaseURL = 'https://api.openai.com/v1';
|
||||
let baseURL = openaiBaseURL;
|
||||
let reverseProxyUrl = process.env.OPENAI_REVERSE_PROXY;
|
||||
|
||||
if (opts.assistants && process.env.ASSISTANTS_BASE_URL) {
|
||||
reverseProxyUrl = process.env.ASSISTANTS_BASE_URL;
|
||||
} else if (opts.azure) {
|
||||
return models;
|
||||
}
|
||||
|
||||
if (reverseProxyUrl) {
|
||||
baseURL = extractBaseURL(reverseProxyUrl) ?? openaiBaseURL;
|
||||
}
|
||||
|
||||
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
|
||||
|
||||
const cachedModels = await modelsCache.get(baseURL);
|
||||
if (cachedModels) {
|
||||
return cachedModels as string[];
|
||||
}
|
||||
|
||||
if (baseURL || opts.azure) {
|
||||
models = await fetchModels({
|
||||
apiKey: apiKey ?? '',
|
||||
baseURL,
|
||||
azure: opts.azure,
|
||||
user: opts.user,
|
||||
name: EModelEndpoint.openAI,
|
||||
});
|
||||
}
|
||||
|
||||
if (models.length === 0) {
|
||||
return _models;
|
||||
}
|
||||
|
||||
if (baseURL === openaiBaseURL) {
|
||||
const regex = /(text-davinci-003|gpt-|o\d+)/;
|
||||
const excludeRegex = /audio|realtime/;
|
||||
models = models.filter((model) => regex.test(model) && !excludeRegex.test(model));
|
||||
const instructModels = models.filter((model) => model.includes('instruct'));
|
||||
const otherModels = models.filter((model) => !model.includes('instruct'));
|
||||
models = otherModels.concat(instructModels);
|
||||
}
|
||||
|
||||
await modelsCache.set(baseURL, models);
|
||||
return models;
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads the default models for OpenAI or Azure.
|
||||
* @param opts - Options for getting models
|
||||
* @returns Promise resolving to array of model IDs
|
||||
*/
|
||||
export async function getOpenAIModels(opts: GetOpenAIModelsOptions = {}): Promise<string[]> {
|
||||
let models = defaultModels[EModelEndpoint.openAI];
|
||||
|
||||
if (opts.assistants) {
|
||||
models = defaultModels[EModelEndpoint.assistants];
|
||||
} else if (opts.azure) {
|
||||
models = defaultModels[EModelEndpoint.azureAssistants];
|
||||
}
|
||||
|
||||
let key: string;
|
||||
if (opts.assistants) {
|
||||
key = 'ASSISTANTS_MODELS';
|
||||
} else if (opts.azure) {
|
||||
key = 'AZURE_OPENAI_MODELS';
|
||||
} else {
|
||||
key = 'OPENAI_MODELS';
|
||||
}
|
||||
|
||||
if (process.env[key]) {
|
||||
return splitAndTrim(process.env[key]);
|
||||
}
|
||||
|
||||
if (opts.userProvidedOpenAI) {
|
||||
return models;
|
||||
}
|
||||
|
||||
return await fetchOpenAIModels(opts, models);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches models from the Anthropic API.
|
||||
* @param opts - Options for fetching models
|
||||
* @param _models - Fallback models array
|
||||
* @returns Promise resolving to array of model IDs
|
||||
*/
|
||||
export async function fetchAnthropicModels(
|
||||
opts: { user?: string } = {},
|
||||
_models: string[] = [],
|
||||
): Promise<string[]> {
|
||||
let models = _models.slice() ?? [];
|
||||
const apiKey = process.env.ANTHROPIC_API_KEY;
|
||||
const anthropicBaseURL = 'https://api.anthropic.com/v1';
|
||||
let baseURL = anthropicBaseURL;
|
||||
const reverseProxyUrl = process.env.ANTHROPIC_REVERSE_PROXY;
|
||||
|
||||
if (reverseProxyUrl) {
|
||||
baseURL = extractBaseURL(reverseProxyUrl) ?? anthropicBaseURL;
|
||||
}
|
||||
|
||||
if (!apiKey) {
|
||||
return models;
|
||||
}
|
||||
|
||||
const modelsCache = standardCache(CacheKeys.MODEL_QUERIES);
|
||||
|
||||
const cachedModels = await modelsCache.get(baseURL);
|
||||
if (cachedModels) {
|
||||
return cachedModels as string[];
|
||||
}
|
||||
|
||||
if (baseURL) {
|
||||
models = await fetchModels({
|
||||
apiKey,
|
||||
baseURL,
|
||||
user: opts.user,
|
||||
name: EModelEndpoint.anthropic,
|
||||
tokenKey: EModelEndpoint.anthropic,
|
||||
});
|
||||
}
|
||||
|
||||
if (models.length === 0) {
|
||||
return _models;
|
||||
}
|
||||
|
||||
await modelsCache.set(baseURL, models);
|
||||
return models;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets Anthropic models from environment or API.
|
||||
* @param opts - Options for fetching models
|
||||
* @returns Promise resolving to array of model IDs
|
||||
*/
|
||||
export async function getAnthropicModels(opts: { user?: string } = {}): Promise<string[]> {
|
||||
const models = defaultModels[EModelEndpoint.anthropic];
|
||||
if (process.env.ANTHROPIC_MODELS) {
|
||||
return splitAndTrim(process.env.ANTHROPIC_MODELS);
|
||||
}
|
||||
|
||||
if (isUserProvided(process.env.ANTHROPIC_API_KEY)) {
|
||||
return models;
|
||||
}
|
||||
|
||||
try {
|
||||
return await fetchAnthropicModels(opts, models);
|
||||
} catch (error) {
|
||||
logger.error('Error fetching Anthropic models:', error);
|
||||
return models;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets Google models from environment or defaults.
|
||||
* @returns Array of model IDs
|
||||
*/
|
||||
export function getGoogleModels(): string[] {
|
||||
let models = defaultModels[EModelEndpoint.google];
|
||||
if (process.env.GOOGLE_MODELS) {
|
||||
models = splitAndTrim(process.env.GOOGLE_MODELS);
|
||||
}
|
||||
return models;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets Bedrock models from environment or defaults.
|
||||
* @returns Array of model IDs
|
||||
*/
|
||||
export function getBedrockModels(): string[] {
|
||||
let models = defaultModels[EModelEndpoint.bedrock];
|
||||
if (process.env.BEDROCK_AWS_MODELS) {
|
||||
models = splitAndTrim(process.env.BEDROCK_AWS_MODELS);
|
||||
}
|
||||
return models;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue