👤 feat: User Placeholder Variables for Custom Endpoint Headers (#7993)

* 🔧 refactor: move `processMCPEnv` from `librechat-data-provider` and move to `@librechat/api`

* 🔧 refactor: Update resolveHeaders import paths

* 🔧 refactor: Enhance resolveHeaders to support user and custom variables

- Updated resolveHeaders function to accept user and custom user variables for placeholder replacement.
- Modified header resolution in multiple client and controller files to utilize the enhanced resolveHeaders functionality.
- Added comprehensive tests for resolveHeaders to ensure correct processing of user and custom variables.

* 🔧 fix: Update user ID placeholder processing in env.ts

* 🔧 fix: Remove arguments passing this.user rather than req.user

- Updated multiple client and controller files to call resolveHeaders without the user parameter

* 🔧 refactor: Enhance processUserPlaceholders to be more readable / less nested

* 🔧 refactor: Update processUserPlaceholders to pass all tests in mpc.spec.ts and env.spec.ts

* chore: remove legacy ChatGPTClient

* chore: remove LLM initialization code

* chore: initial deprecation removal of `gptPlugins`

* chore: remove cohere-ai dependency from package.json and package-lock.json

* chore: update brace-expansion to version 2.0.2 and add license information

* chore: remove PluginsClient test file

* chore: remove legacy

* ci: remove deprecated sendMessage/getCompletion/chatCompletion tests

---------

Co-authored-by: Dustin Healy <54083382+dustinhealy@users.noreply.github.com>
This commit is contained in:
Danny Avila 2025-06-23 12:39:27 -04:00 committed by GitHub
parent 01e9b196bc
commit a058963a9f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
30 changed files with 542 additions and 2844 deletions

View file

@ -1,106 +0,0 @@
const { HttpsProxyAgent } = require('https-proxy-agent');
const { resolveHeaders } = require('librechat-data-provider');
const { createLLM } = require('~/app/clients/llm');
/**
* Initializes and returns a Language Learning Model (LLM) instance.
*
* @param {Object} options - Configuration options for the LLM.
* @param {string} options.model - The model identifier.
* @param {string} options.modelName - The specific name of the model.
* @param {number} options.temperature - The temperature setting for the model.
* @param {number} options.presence_penalty - The presence penalty for the model.
* @param {number} options.frequency_penalty - The frequency penalty for the model.
* @param {number} options.max_tokens - The maximum number of tokens for the model output.
* @param {boolean} options.streaming - Whether to use streaming for the model output.
* @param {Object} options.context - The context for the conversation.
* @param {number} options.tokenBuffer - The token buffer size.
* @param {number} options.initialMessageCount - The initial message count.
* @param {string} options.conversationId - The ID of the conversation.
* @param {string} options.user - The user identifier.
* @param {string} options.langchainProxy - The langchain proxy URL.
* @param {boolean} options.useOpenRouter - Whether to use OpenRouter.
* @param {Object} options.options - Additional options.
* @param {Object} options.options.headers - Custom headers for the request.
* @param {string} options.options.proxy - Proxy URL.
* @param {Object} options.options.req - The request object.
* @param {Object} options.options.res - The response object.
* @param {boolean} options.options.debug - Whether to enable debug mode.
* @param {string} options.apiKey - The API key for authentication.
* @param {Object} options.azure - Azure-specific configuration.
* @param {Object} options.abortController - The AbortController instance.
* @returns {Object} The initialized LLM instance.
*/
function initializeLLM(options) {
const {
model,
modelName,
temperature,
presence_penalty,
frequency_penalty,
max_tokens,
streaming,
user,
langchainProxy,
useOpenRouter,
options: { headers, proxy },
apiKey,
azure,
} = options;
const modelOptions = {
modelName: modelName || model,
temperature,
presence_penalty,
frequency_penalty,
user,
};
if (max_tokens) {
modelOptions.max_tokens = max_tokens;
}
const configOptions = {};
if (langchainProxy) {
configOptions.basePath = langchainProxy;
}
if (useOpenRouter) {
configOptions.basePath = 'https://openrouter.ai/api/v1';
configOptions.baseOptions = {
headers: {
'HTTP-Referer': 'https://librechat.ai',
'X-Title': 'LibreChat',
},
};
}
if (headers && typeof headers === 'object' && !Array.isArray(headers)) {
configOptions.baseOptions = {
headers: resolveHeaders({
...headers,
...configOptions?.baseOptions?.headers,
}),
};
}
if (proxy) {
configOptions.httpAgent = new HttpsProxyAgent(proxy);
configOptions.httpsAgent = new HttpsProxyAgent(proxy);
}
const llm = createLLM({
modelOptions,
configOptions,
openAIApiKey: apiKey,
azure,
streaming,
});
return llm;
}
module.exports = {
initializeLLM,
};